
REGINNA 4.0
Data Modelling:
From Relational Databases to Big Data

Andrea Brunello
andrea.brunello@uniud.it

3rd July, 2023

mailto:andrea.brunello@uniud.it

Some general information

I am a tenure-track assistant professor at the University of Udine, and member of
the Data Science and Automatic Verification Laboratory

§ https://www.andreabrunello.com/

§ https://datasciencelab.dimi.uniud.it/

Research topics:

§ Artificial Intelligence for healthcare

§ Fingerprint-based positioning systems

§ Symbolic and Sub-symbolic AI integration

§ Digital humanities

Several Bachelor’s / Master’s theses and PhD Projects are available!

1 / 86

https://www.andreabrunello.com/
https://datasciencelab.dimi.uniud.it/

Today’s agenda

We are going to spend three hours together, talking about:

§ The need for databases

§ Different kinds of data

§ Relational databases and SQL

§ NoSQL solutions
§ The twilight zone: NewSQL

§ Data warehousing & data lakes

§ The ETL process

§ Types of analytics

2 / 86

Database Management System (DBMS)

A DBMS contains information on a particular domain

§ Collection of interrelated data (database)

§ Set of programs to manage the data

For example, in the insurance domain:

§ Data: customers, insurance policies, claims, insured goods, …

§ Programs: add a new customer, open a claim,
 perform a risk assessment, …

… Databases are really pervasive!

3 / 86

Before DBMSs

In the early days, data-centric applications were built by means of:

§ Files, e.g., in “csv” format

§ Programs specifically designed to access such files

4 / 86

Drawbacks of relying on files and programs

Data redundancy and heterogeneity

§ Multiple file formats and programming languages

§ Duplication of information in different files

à Possible data inconsistency!

Difficulty in accessing data

§ Need to write a new program to carry out each new task

§ Low interactivity

5 / 86

Drawbacks of relying on files and programs

Constraints management
§ Domain constraints (e.g., car value >= 0) become «buried» in program

code rather than being stated explicitly
§ Hard to add new constraints and manage existing ones

Atomicity of updates

§ Failures may leave the system in an inconsistent state
§ E.g., a transfer of funds from one account to another should be either

carried out in its entirety or not happen at all

6 / 86

Drawbacks of relying on files and programs

Concurrent access by multiple users
§ What happens if 2 users try to access and modify the same data?
§ E.g., two users booking the last airline ticket

Security problems

§ Hard to provide a user access to some,
but not all, data

à (Relational) DBMSs provide solutions to all these problems!

7 / 86

Different kinds of data

Data considered by information systems used to be very simple

Things started to change in the 2000s, following the rise of the Internet and its

applications, such as social networks

We can broadly distinguish between the following kinds of data:

§ Structured data

§ Semi-structured data

§ Unstructured data

8 / 86

Structured data

It can be seen as tabular data, represented by rows and columns

§ Each row belonging to a same table has a fixed format, think about an
Excel file

§ For instance, personal data regarding customers

§ Easy to store and process, but they convey a limited amount of information

9 / 86

Semi-structured data

Semi-structured data do not have a fixed format, but still some structuring

§ They contain tags or other markers to separate semantic elements and
enforce hierarchies of fields within the data

§ For example, this can be the case with closed form answers given to
telephone surveys

10 / 86

Unstructured data

Unstructured data is not organized in any predefined manner

§ Free text

§ Audio and visual materials

§ Difficult to store, index, and analyse

“Vehicle A crossed the road failing to give
way to vehicle B, which subsequently hit it
on its left side.”

11 / 86

Managing structured data: Relational databases

Relational databases represent information (data model) by means of rows (tuples)

that are grouped into tables (relations)

Since their proposal, in the 1970s, by Ted Codd, they

have been playing a prominent role in the database
realm, because of their simplicity and elegant

formalization

In addition, relational databases come with SQL

(Structured Query Language), a user-friendly language
that allows for an intuitive interaction with the database

and its content

12 / 86

Relational DBs: Tables to represent data and
relationships among data

Table “Employee”

Table “Department”

13 / 86

Relational databases:
Enforcing data consistency

Intra-relational constraints:
§ Attribute domains

§ Not-NULL

§ Unique

§ Primary key

Inter-relational constraints:
§ Foreign key

Other than these, RDBMSs offer many other solutions to guarantee data

consistency, e.g., CHECK constraints, triggers, …

In addition, these systems are quite sophisticated for what concerns the

management of atomicity and concurrency of operations

14 / 86

Relational databases:
Major RDBMS vendors

PostgreSQL: https://www.postgresql.org/

Microsoft SQL Server: https://www.microsoft.com/en-us/sql-server/

MySQL: https://www.mysql.com/

ORACLE: https://www.oracle.com/database/

15 / 86

https://www.postgresql.org/
https://www.microsoft.com/en-us/sql-server/
https://www.mysql.com/
https://www.oracle.com/database/

Structured Query Language (SQL)

SQL is the (largely) most popular language used to interact with relational

databases, due to its intuitive syntax

It encompasses several functionalities:

§ Data Definition Language, DDL
§ Definition and update of table schemas

§ Management of integrity constraints

§ Data Manipulation Language, DML

§ Insert, update, delete of tuples

§ Management of data access criteria and concurrency aspects

16 / 86

Structured Query Language (SQL)

SQL was born in the 1970s, with the development of language Sequel by IBM

It then became an ANSI/ISO standard in 1986; latest version SQL:2019

Although standardized, different

DBMS vendors implement slightly
different versions of the language,

especially concerning its advanced
features

Still, the core functionalities of the
language are largely equivalent

across DBMSs
17 / 86

Structured Query Language (SQL): DML

The fundamental block of an SQL query is composed of three clauses

SELECT ß list of attributes, aggr. functions, expressions

FROM ß data sources, tables

WHERE ß filtering conditions for the data extraction

Other clauses: ORDER BY, HAVING, GROUP BY

18 / 86

Structured Query Language (SQL): Example 1

Extract the name, surname, and monthly salary all employees of gender female and

with a total salary greater than 60000

SELECT first_name, last_name, salary/12

FROM employee
WHERE gender = ‘Female’ AND salary > 60000;

19 / 86

Structured Query Language (SQL): Example 2

Extract the average salary of employees working in the sales department

SELECT AVG(salary)

FROM employee

WHERE department = ‘sales’;

20 / 86

Structured Query Language (SQL): Example 3

Extract the name and surname of employees working at a department with a

budget greater than 720000

SELECT employee.first_name, employee.last_name

FROM employee

 JOIN department ON employee.department = department.code
WHERE department.budget > 720000;

21 / 86

Structured Query Language (SQL): Example 3

Each row of employee is combined with every other row of department; then, only

the resulting rows that satisfy the JOIN condition are kept

22 / 86

Structured Query Language (SQL): Example 3

At this point, the WHERE condition is applied over the remaining rows

We then obtain the final result, keeping just the attributes specified in the

SELECT clause

23 / 86

Recap

Kinds of data Structured

Semi-structured

Unstructured

Easy to handle

Provide limited information

Hard to handle

Lots of information{

Relational DBs

Much better than
using files on disk

Data consistency
(constraints)

SQL

Widespread usage

{

24 / 86

Managing semi-structured & unstructured data:
NoSQL solutions

The term NoSQL (Not only SQL) refers to data stores that are not relational

databases, rather than explicitly describing what they are

A possible definition (http://nosql-database.org/): “Next Generation DBs mostly
addressing some of the points: being non-relational, distributed, open source and

horizontally scalable”

NoSQL storage technologies have very heterogeneous operational, functional,
and architectural characteristics

NoSQL proposals have been developed starting from 2009 trying to address new
challenges that emerged in that decade

25 / 86

http://nosql-database.org/

NoSQL Challenges

Over the years, data got bigger in volume, increased in their heterogeneity, and

started to be produced faster and faster.

This put classical RDBMS solutions under strain.

NoSQL systems are specifically designed to accommodate data characterized by

a high:

§ Volume: e.g., insurance data of customers worldwide

§ Variety: e.g., accident descriptions

§ Velocity: e.g., continuous monitoring of car trackers

Key characteristics of NoSQL solutions: flexibility and (horizontal) scalability

26 / 86

Vertical VS horizontal scaling

27 / 86

Volume, Variety, Velocity – Big Data

Gartner analyst Doug Laney introduced the 3Vs concept in a 2001 MetaGroup
research publication: "3D data management: Controlling data volume, variety
and velocity"

28 / 86

Volume, Variety, Velocity – Big Data

29 / 86

Drawbacks of NoSQL solutions

They have very simple data models and do not enforce the same number of

constraints as traditional RDBMSs à potential data quality issues

Flexibility in accommodating heterogeneous data can become a problem if not

properly managed

The design process is not as straightforward and consolidated as that of relational

solutions

Lack of SQL means that the interaction is more difficult!

30 / 86

The NoSQL Quadrant

31 / 86

Key-Value stores

Key-value stores are based on the concept of associative array, i.e., a data

structure that contains pairs of <key, value>; the key is used to access the values

For example, we could have the arrays: <SSN, phone>, <SSN, dept_name>,

<dept_name, budget>

The fundamental point is that accessing a value knowing the key is extremely fast

Operations allowed over an associative array are:

§ Add: add an element to the array
§ Remove: remove an element from the array, knowing its key

§ Modify: change the value associated to a key

§ Find: search for a value knowing the key

32 / 86

Key-Value stores: Main characteristics

Key-value stores are extremely simple when it comes to their data model

Typical relational operations, such as complex filters and JOINS are not possible

Important RDBMS functionalities such as foreign keys and several other kinds of
constraints are not supported

Nevertheless, these stores can be extremely sophisticated regarding their

implementation of horizontal scalability

33 / 86

Key-Value stores: Use cases and examples

Typical use case: storing simple information that has to be accessed fast

§ Storage of profiles, preferences, and configurations
§ Storage of multimedia objects

§ Storage of fast sensors data

Available systems
§ Redis: https://redis.io/
§ Berkeley DB:

oracle.com/database/technologies/related/berkeleydb.html

§ Aerospike: https://aerospike.com/

34 / 86

https://redis.io/
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://aerospike.com/

Document-oriented databases

This kind of databases store, retrieve and manage document-oriented

information, also referred to as semi-structured data

Documents do not have a fixed

structure, nonetheless they make use
of tags or other markers to organize

their content (e.g., XML and JSON
file formats)

Document stores represent a step up
with respect to key-value stores,

since they allow a structure to be
defined over keys and values, which

can be operated upon by the users

Custom script
is needed to
perform the JOIN

35 / 86

Document-oriented databases:
Supported operations

CRUD:

§ Creation: of a new document

§ Retrieval: based on key, content, or metadata (tags)

§ Update: the content or metadata of the document

§ Deletion: of a document

Each document in the database is uniquely identified by a key, which can be used

to retrieve the document from the database

Also here, there is no explicit support support for foreign keys or JOIN operations.
Relationships are represented by document nesting (for example, all the books

written by a given author)

36 / 86

Document-oriented databases:
Use cases and examples

Typical use case: similar to key-value stores, but more complex data can be

handled, e.g., management of product data, inventory

Available systems

§ MongoDB: https://www.mongodb.com/

§ RavenDB: https://ravendb.net/

§ Apache CouchDB: https://couchdb.apache.org/

37 / 86

https://www.mongodb.com/
https://ravendb.net/
https://couchdb.apache.org/

Column family stores

The roots of column family stores can be traced back in the 1970s

However, due to market needs and non-favourable technology trends it was not

until the 2000s that they really took off

A column-oriented DBMS stores each database table column separately, in
different disk locations, or even different machines

Values belonging to the same column are packed together, as opposed to

traditional DBMSs that store entire rows one after the other

38 / 86

Rows VS columns

2021-04-20,Rome,A01,Bill,50
2021-04-23,Rome,A03,John,150
2021-04-22,Milan,B05,Mary,25
2021-04-19,Milan,C09,Jane,80
2021-04-25,Venice,F12,Jim,75

2021-04-20,2021-04-23,2021-04-22,2021-04-19,2021-04-25
Rome,Rome,Milan,Milan,Venice
A01,A03,B05,C09,F12
Bill,John,Mary,Jane,Jim
50,150,25,80,75

39 / 86

Column family stores:
Advantages and disadvantages

Column stores are beneficial when the typical application is reading a
subset of columns, or performing aggregate functions over them (AVG,
MIN, MAX, …)

They offer efficient storing capabilities due to an easier compression of
data, which is performed column by column

Newly inserted tuples have to be broken down to their component
attributes, and each attribute must be written separately

Reading overhead for queries that access many attributes at the same time,
due to the tuple reconstruction process

40 / 86

Column family stores: Available systems

Apache Cassandra: https://cassandra.apache.org/

Vertica: https://www.vertica.com/

HBase: https://hbase.apache.org/

41 / 86

https://cassandra.apache.org/
https://www.vertica.com/
https://hbase.apache.org/

Graph databases

A graph database uses graph structures with nodes, edges, and properties to

represent and store data

Graph databases can naturally represent certain kinds of semi-structured, highly

interconnected data, such as those present in social networks, or in geospatial
and biotech applications

42 / 86

Graph databases: Example

Connected nodes have direct

pointers to each other, thus,
navigating the graph is extremely

fast and simple

The same graph could be modelled

using other kinds of NoSQL

approaches, as well as RDBMSs,
nevertheless, the resulting

databases would be very difficult
to query, update, and populate

43 / 86

Graph databases: Use cases and examples

Graph databases can easily answer to queries such as:

§ What is the shortest path connecting node X with node Y?

§ What are the friends of Bob?

§ What are the friends of friends of Bob?

Available systems:

§ Neo4j: https://neo4j.com/

§ AllegroGraph: https://allegrograph.com/

44 / 86

https://neo4j.com/
https://allegrograph.com/

The twilight zone: NewSQL

In recent years there has been a progressive (re)approach between relational

solutions and NoSQL, with the birth of the so-called NewSQL.

NewSQL refers to DBMSs that try to combine the performance capabilities of
NoSQL with the data guarantees offered by relational databases.

For example, there are NoSQL systems capable of effectively supporting
transactions (Neo4j is an example), and others that offer languages inspired by

SQL, although generally less powerful than the latter (e.g., Cassandra’s CQL).

On the other hand, relational databases such as Postgres allow, today, to store

semi-structured data inside tables, thanks to the JSON and JSONB formats,
while others offer support to store time series data, generated quickly and in

large quantities (e.g., TimescaleDB). 45 / 86

Recap

Kinds of data Structured

Semi-structured

Unstructured }NoSQL

Key-value stores

Document-oriented

Column-based

Graph databases

Distributed

Simple
data model

Big Data
support

Flexible

}
Relational

NoSQL

46 / 86

Files on disk, relational databases, NoSQL data
stores, data on the Web, …

Irrespective from the considered business domain, medium to large sized

companies typically have to deal with several kinds of data

Such data can be stored into different kinds of systems, or even simply saved as

files on disk

This makes data analyses quite hard

47 / 86

Motivating example: The contact centre domain

Multi-channel contact centres are an important component of business world

They serve as a primary customer-facing channel for firms in many different

industries, and employ millions of agents across the globe

48 / 86

The contact centre domain

During their operation, they generate vast amounts of heterogeneous data:

automatic call logs, survey answers, hand-written notes, chat/email messages,
voice recordings, …

Operations carried out by contact centres can be broadly classified into:

§ Inbound: handling incoming traffic

§ Outbound: performing outgoing calls, sending emails, etc

§ Backoffice: e.g., data preparation and data analysis tasks

49 / 86

The contact centre domain:
A possible starting situation

Semi-structured

Structured

UnstructuredFiles on disk

NoSQL – Document based
MongoDB

50 / 86

What are the issues here?

§ Heterogeneous systems require ad-hoc solutions for reading and writing data

§ Different databases adopt different conventions/formats for storing the data

§ Possibly (and probably) replicated and inconsistent information

§ Difficult to perform queries and analyses involving more than one repository

§ Some of the data are not even considered for analytics purposes

§ Classical, operational systems are not designed to perform complex
analyses, but to support applications and daily operations (OLTP, On Line
Transaction Processing)

51 / 86

How can we solve them?

There is the necessity of having a clear and uniform view over all the company

data, currently scattered among several systems

This can be obtained by means of an enterprise-wide repository, in which
information coming from different sources are brought together

Such a repository should be explicitly designed to support analytics tasks (OLAP,
On Line Analytical Processing)

à Data warehousing provides a solution to all these problems!

52 / 86

Data warehousing

According to William Inmon, a data warehouse is a subject-oriented, integrated,

consistent, non-volatile, and time-variant collection of data in support of

management’s decisions

Thus, data warehousing is a technique for collecting and managing data
originating from multiple sources, so to provide meaningful business insights

The data warehouse makes it easier to perform analysis tasks:

§ Single, integrated, source of truth
§ It typically poses at the heart of a decision support system, i.e., an

information system that supports business or organizational decision-
making activities

53 / 86

Subject-oriented

The data warehouse focuses on enterprise-specific concepts, as defined in the

high-level corporate data model.

Subject areas may include:

§ Customer

§ Agent

§ Policy
§ Claim

§ Accident

On the contrary, classical databases may hang on enterprise-specific

applications (e.g., to provide support to user interfaces and production software).

54 / 86

Integrated and consistent

Data is fed from multiple, disparate sources into the warehouse

As the data is fed, it is converted, reformatted, restructured, summarized, to

conform to the data warehouse schema

Data is entered into the data

warehouse in such a way that the

many inconsistencies at the

operational level are resolved

Data migration is carried out by means

of the ETL (Extract, Transform, Load)

process

Relational databases

NoSQL databases

ETL
Data warehouse

Internet and intranet data

Disk files

55 / 86

Integrated and consistent: ETL definition

Extract: data is gathered from multiple, heterogeneous sources

Transform:

§ Data cleansing: removal of errors and inconsistencies
§ Data integration: reconciliation of data on the same item coming from

different sources

§ Data aggregation: transformation/aggregation of data to match the data
warehouse schema (typically, relational)

Load: initial bulk load, and subsequent continuous feed

56 / 86

Integrated and consistent: ETL caveats

Before processing all the dirty data, it is important to determine the cleansing and

integration cost for every dirty data element (part of the data quality process)

Everyone would like to have clean data only, but it is also a matter of cost and
time to perform ETL

Nevertheless, always remember:

§ Garbage in = garbage out
§ Your analyses are as good as your data

57 / 86

Non-volatile

After the data is inserted in the warehouse, it is neither changed nor removed

The only exceptions happen when false data is inserted or the capacity of the data

warehouse is exceeded and archiving becomes necessary

This means that DWs can be essentially viewed as read-only databases

When subsequent changes occur, a new snapshot record is written. In doing so, a

historical record of data is kept in the data warehouse

58 / 86

Time-variant

Time variancy implies that the warehouse stores data representative as it existed

at many points in time in the past

A time horizon is the length of time data is represented in an environment; a 5-to-

10-year time horizon is normal for a data warehouse

While operational databases contain current-value data (no history of changes),

data warehouses contain sophisticated series of snapshots, each taken at a

specific moment in time

59 / 86

OLAP: On Line Analytical Processing

In OLTP applications, which are typical of classical databases, the user reads and

writes small pieces of detailed current-value data, e.g., to perform a bank transfer

from one account to another

On the contrary, data warehouses support OLAP operations, in which the user is
interested in performing read-only operations aggregating historical data over

large datasets

E.g., calculate the average amount of money that customers under the age of 20

withdrew in Italy in the years 2018-2022

Such operations are typically complex and time consuming

à Multidimensional model

60 / 86

Data marts

A data mart is focused on a single functional area of an organization and it

contains a subset of the data stored in a data warehouse

A data mart is a condensed version

of a data warehouse and is designed
for use by a specific department, unit

or set of users in an organization

Data marts are smaller in size and

are more flexible compared to a
data warehouse, and can be fed

starting from the data contained in
the latter

Data warehouse

Marketing data mart

Sales data mart

HR data mart

R&D data mart

61 / 86

Overall data warehouse architecture

62 / 86

Data lake

A data lake is a repository that can store large amounts of structured, semi-

structured, and unstructured data in its native format, allowing to access them

before the ETL phase

Data is only transformed upon usage (schema on read vs. schema on write)

Storing information in a data lake is relatively inexpensive

w.r.t. a data warehouse

A data lake is not a substitute for a data warehouse; the

latter guarantees quick answers to interactive queries

thanks to its schema on write approach

If not properly managed, the data lake can easily grow

into a data swamp! 63 / 86

The multidimensional model

The distinctive features of OLAP applications suggest the adoption of a

multidimensional representation of data, since running analytical queries

against traditionally stored information would result in complex query specification

and long response times

The key idea is that of pre-

aggregating some of the data

The multidimensional model
relies on the concepts of fact,
measure, and dimension

64 / 86

Facts and measures

A fact is the part of your data that indicates that a specific event or transaction

has happened, like the sale of a product or receiving a shipment

A fact is composed of multiple measures, that describe it

For example, a fact may be that of receiving an order for some shoes, detailed by

the two measures:

§ “price”

§ “quantity”

65 / 86

Dimensions

Dimensions provide a way to categorize/label/index facts, e.g., considering

spatial or temporal aspects. Thus, they allow to filter and group facts

The previous order may be detailed by the following two measure and three

dimension attributes:

§ Total amount US$ 750

§ Quantity purchased is 10

§ Received yesterday at 2 pm

§ Served by our store in New York

§ Placed by customer #XAZ19

66 / 86

Data hypercubes

In the multidimensional model, data is represented in an n-dimensional space,

usually called a data cube or hypercube

A data cube is defined by dimensions (cube edges) and facts (cube cells):

§ Dimensions are perspectives used to analyse the data

§ Facts have related numeric values, the measures

Data cubes can be sparse, meaning that there may not be a cell value for each

combination of dimensions

67 / 86

2-dimensional data in a spreadsheet:
Pivot tables

Bi-dimensional pivot table, that considers:

§ Measure “Amount”

§ Dimensions “Place” and “Product”

§ Facts are the amounts of products sold in each country

68 / 86

3-dimensional OLAP cube example

Amount of products sold in each quarter in different cities

69 / 86

Dimension hierarchies

To extract strategic knowledge from a cube, it is necessary to view its data at

several levels of detail. Dimension hierarchies provide such a capability

70 / 86

OLAP operations

The four types of analytical operations performed on OLAP cubes are:

§ Roll up
§ Drill down

§ Slice and dice
§ Pivot (rotate)

In practice, OLAP cubes are

implemented by pre-aggregating
the data at the maximum level of

detail allowed by the dimension
hierarchies

71 / 86

Roll up

It involves summarizing the data along a chosen dimension (e.g., sum), navigating

from a finer level of detail (down) to a coarser (up) along the associated hierarchy

72 / 86

Drill down

It allows the user to move from summarized (up) to more detailed (down) data

along a dimension hierarchy; useful to investigate interesting patterns further

73 / 86

Slice and dice

It is the act of picking a subset of a cube by fixing one or more values for one or

more of its dimensions

74 / 86

Pivot

This operation allows an analyst to rotate the cube in space to see its various

faces. In other words, the pivot operation allows to look at the data from a different

perspective

For each City, look at
the data in terms of
Time and Product

For each product, look
at the data in terms of
City and Time

75 / 86

Hypercubes and representations

Note that hypercubes, like pivot tables, are just an intuitive representation of how

the data are pre-aggregated and arranged within the system. The information can

then be conveyed to the user in several manners, e.g., relying on different

(interactive) graphs

Total number of sales in the, drill-down operation
over the spatial dimension 76 / 86

The contact centre domain:
A possible starting situation

Semi-structured

Structured

UnstructuredFiles on disk

NoSQL – Document based

77 / 86

The contact centre domain:
Final decision support system

78 / 86

Extracting value from data

Collecting data is important but, without analyses, there is no value from them

Creating value from data is also referred to as data monetization

Not only analyses… sometimes data monetization pertains to just selling data

(e.g., by social networks)

There are three main analysis types to extract value from data:

§ Descriptive analytics

§ Predictive analytics

§ Prescriptive analytics

79 / 86

Descriptive analytics

It is used in almost every company (Business Intelligence)

It is focused on historical or current data, and makes use of OLAP and statistical

techniques to analyse/summarise data

E.g., drill down, roll up, slicing and dicing, and pivoting operations performed on

data cubes

Typical questions:

§ How many customers were lost to the competition in the last year?
§ What customers are likely to be committing a fraud regarding their

currently opened claims (= which customers are currently deviating from
the usual behaviour)?

80 / 86

Predictive analytics

Predictive analytics aims at developing a vision of the future making use of past

data (Business Analytics)

It heavily relies on statistical analyses and machine learning, in addition to proper

data modelling, pre-processing and querying

Typical questions:

§ What will the churn rate of
customers be in the next

three years?

§ What customers are most
likely to commit a fraud

regarding their future claims?
81 / 86

Prescriptive analytics

Prescriptive analytics is a relatively recent concept which has its roots in predictive

tasks, but it goes even further

It can suggest to the decision makers the actions to take in order to reach a

desired goal

Typical example:

§ What are the factors that
mostly influence the probability

of churn?

§ How will the future churn rate
be affected if I work on them?

82 / 86

The contact centre domain:
Prospective decision management system

A DMS is an “action-oriented” evolution of a DSS

DSSs aim at recommending an action by offering managers information upon
which to come up with an idea and ultimately to make a choice

DMSs make one step more and take actions without human intervention based on
known information and a set of coded business rules

Of course, this mainly involves routinary decisions

83 / 86

Recap

Many sources
of information

Analyses
are difficult

Integrated/consistent (ETL)

Non-volatile

Need for a centralized,
uniform, repository of data

Data warehouse Data lake

Descriptive analytics (B.I.)

Predictive analytics

Prescriptive analytics

Subject-oriented

Time-variant Schema on read

“Raw” data

} DSS

DMS

OLAP

{

84 / 86

Main take aways

§ Data management is a very complex topic, as there are several

kinds of data (structured, semi-structured, unstructured)

§ In addition, Big Data exhibit Volume, Variety, and Velocity

§ DBMSs allow to store, manage, and retrieve data in a principled
manner, addressing much of the inherent complexity

§ There are relational and NoSQL DBMSs, each with pros and cons

§ Due to this high heterogeneity, an enterprise information system can
become quite complex, and difficult to use for data analytics tasks

§ Data warehousing provides a solution to handle this heterogeneity

§ Once the data are correctly modelled, data monetization can take

place (descriptive, predictive and prescriptive analytics) 85 / 86

Bibliography

§ Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system

concepts.

§ Gudivada, V. N., Rao, D., & Raghavan, V. V. (2014, June). NoSQL systems for

big data management. In 2014 IEEE World congress on services (pp. 190-197).

§ Harrison, G. (2015). Next Generation Databases: NoSQL and Big Data. Apress.

§ Pavlo, A., & Aslett, M. (2016). What's really new with NewSQL?. ACM Sigmod

Record, 45(2), 45-55.

§ Inmon, W. H. (2005). Building the data warehouse. John Wiley & Sons.

86 / 86

