RECINNA

Computer Vision and Machine Learning in Industry 4.0: Use case (inserts and CNNs)

Laura Fernández Robles Universidad de León (Spain) l.fernandez@unileon.es

Manufacturing

www.reginna4-0.eu

Credits

- Book: Deep Learning with Python (François Chollet).
- <u>https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html</u>
- <u>https://deeplearning4j.org/neuralnet-overview</u>
- MIT course: Introduction to Deep Learning: <u>http://introtodeeplearning.com/</u>
- <u>https://brilliant.org/wiki/convolutional-neural-network/</u>
- Convolutional Neural Networks for Visual Recognition (Stanford University): <u>http://cs231n.stanford.edu/</u>

Page 2

Table of contents

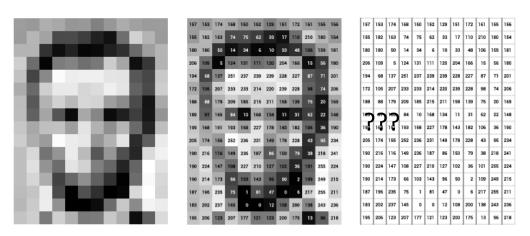
- 1. Introduction
- 2. Neural Networks
- 3. Convolutional Neural Networks
- 4. Issues with CNNs
- 5. Some Applications
- 6. Hands on: Automatic classification of inserts using image classification with CNN

Introduction

Deep Learning ARTIFICIAL INTELLIGENCE MACHINE LEARNING NEURAL NETS DEEP dozens of LEARNING different ML methods

Example:

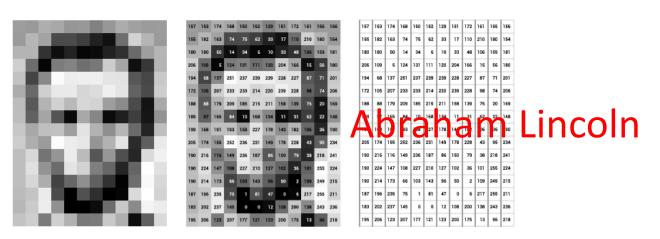
Which US president is this?



Input image

Example:

Which US president is this?



Input image

Example:

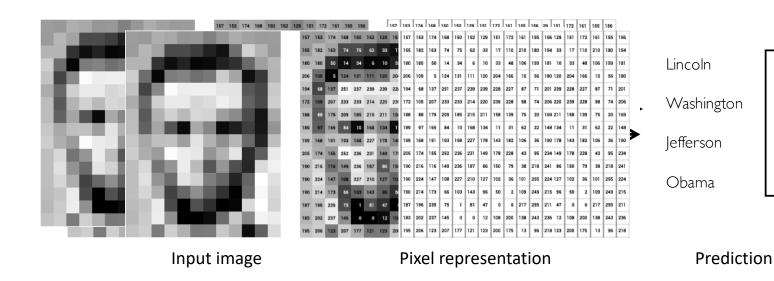
Which US president is this?

0.8

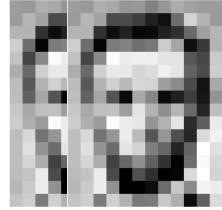
0.1

0.05

0.05

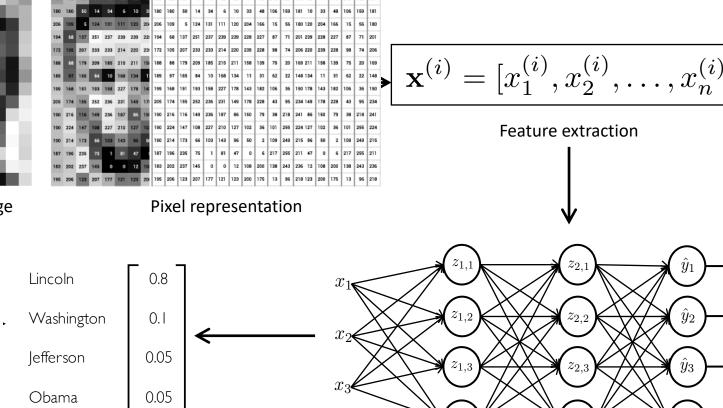


150 152



Input image

157	153	174	168	150	152	129	151	172	161	155	156	29	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180	20	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	п	201	39	228	227	87	п	201
172	105	207	233	233	214	220	239	228	98	74	206	20	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169	11	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	34	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190	78	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	96	234	49	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224	27	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218	23	200	175	13	96	218

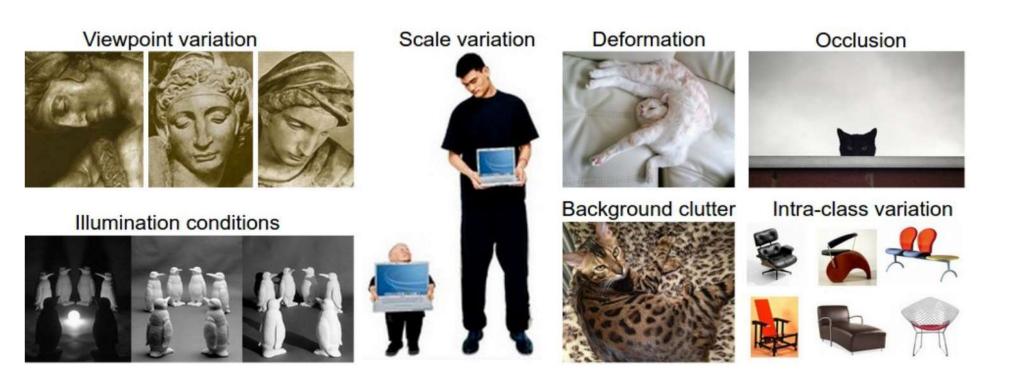


174 168 150 152 129 151 172 161 155 156 129 151 172 161 155 156

Using machine learning: Manual feature extraction

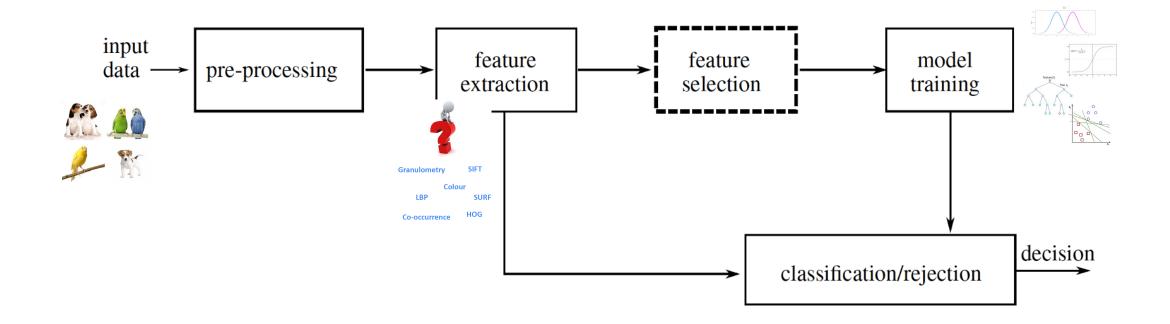
Problems?

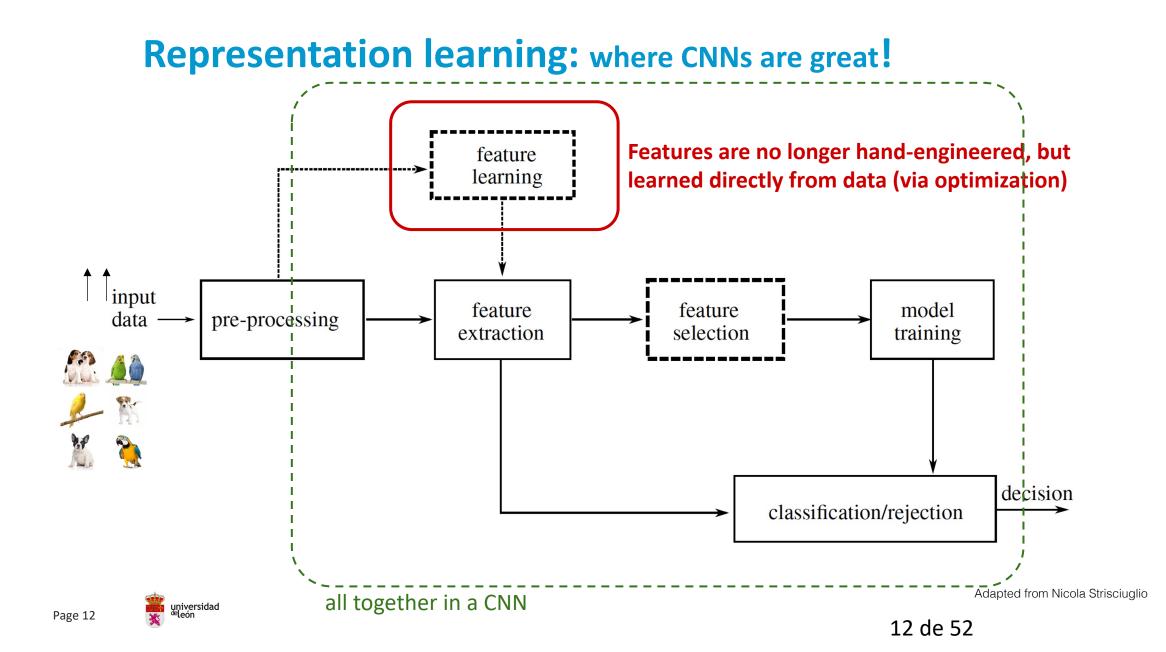
RECINNA 4.0



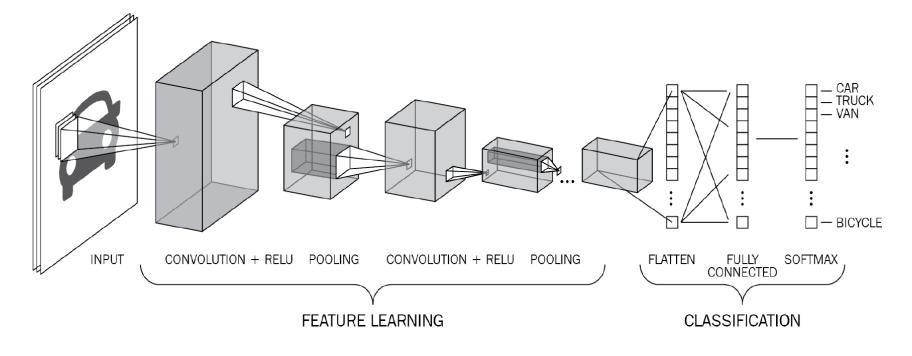
Representation learning: where CNNs are great!

A classical supervised pattern recognition pipeline





Representation learning: where CNNs are great!



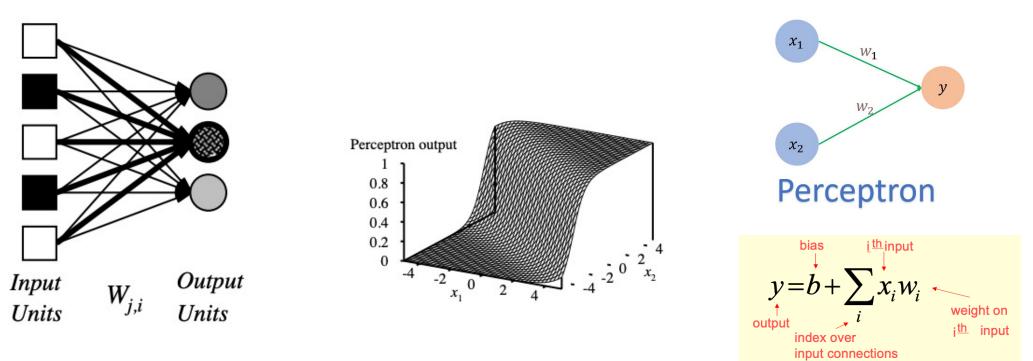
Modern Computer Vision with PyTorch

Adapted from Nicola Strisciuglio

13 de 52

Neural Networks

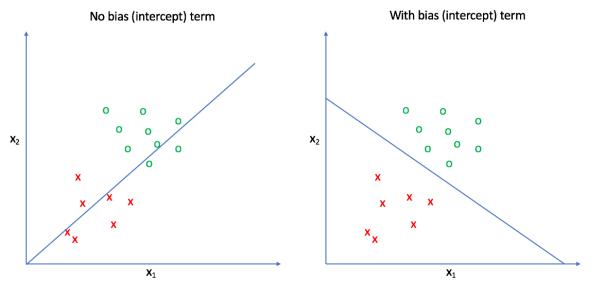
Weighted linear combination of feature values and weights can be illustrated as a network



Adjusting weights moves the location, orientation, and steepness of cliff

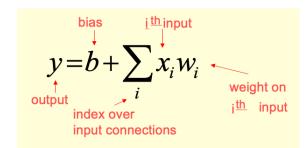
Page 15

Bias



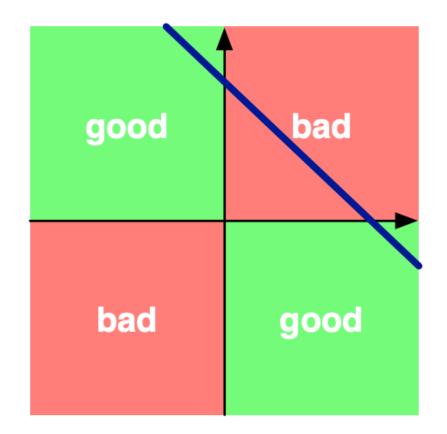
Our line is forced to pass through the origin.

Adding the intercept term allows for much better fit.



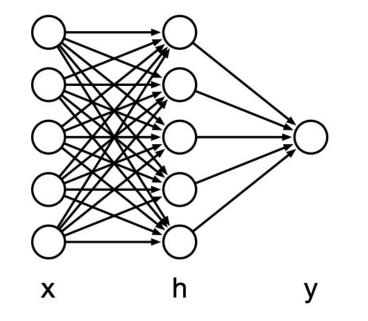
https://www.jeremyjordan.me/intro-toneural-networks/

Linear models cannot model XOR



Neural Networks (NN): multiple layers

Add an intermediate ("hidden") layer of processing (each arrow is a weight)

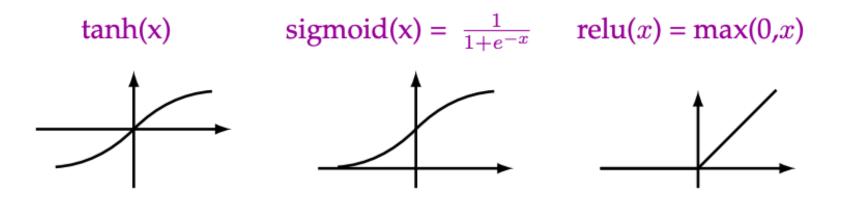


Have we gained anything so far? The result of combining linear transformations is also a linear transformation

Neural Networks (NN): Non-Linearity

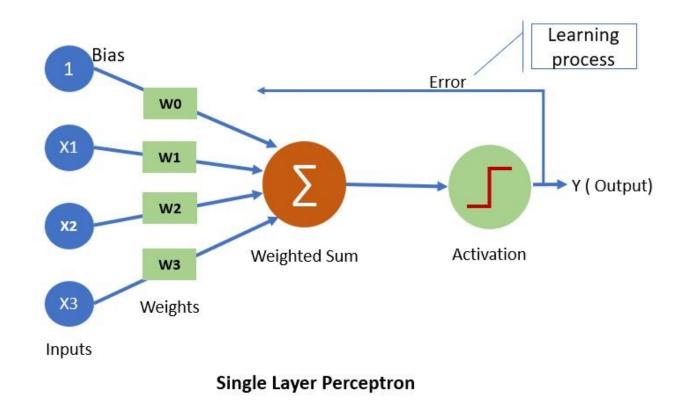
Instead of computing a linear combination, add a non-linear function.

Popular choices of activation functions:

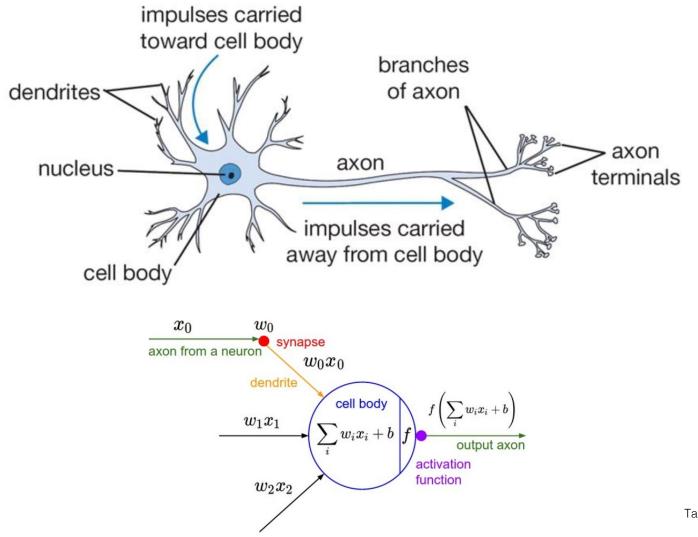


sigmoid is also called the "logistic function"

Page 19



Neural Networks (NN): Why "neural" networks?

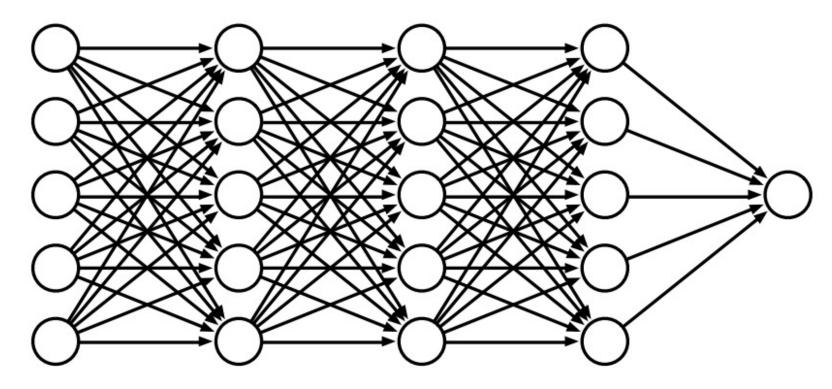


Taken from Andrea Palazzi

Deep Neural Networks (DNN)

More layers = deep learning

Having multiple processing steps allows complex functions



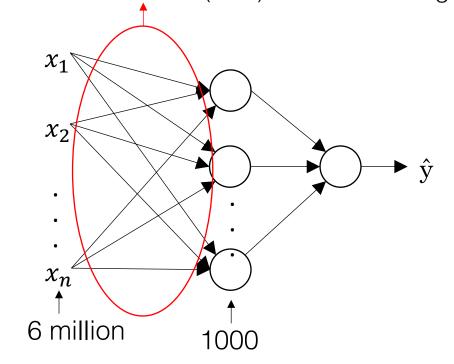
Convolutional Neural Networks

Deep learning on large images

High number of input parameters -> high number of training parameters:

- Requires lot of data to avoid overfitting
- Requires high memory to train the parameters

1000 x 6 m + 1000 (bias) = >6 billion weights



 $n_H \times n_W \times 3 = 1000 \times 2000 \times 3$

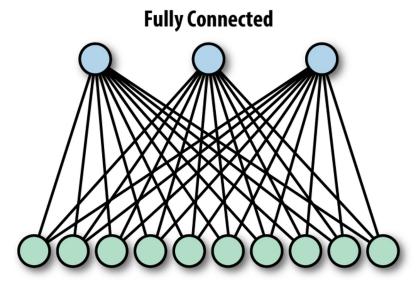
Fully Connected vs Convolutional Networks

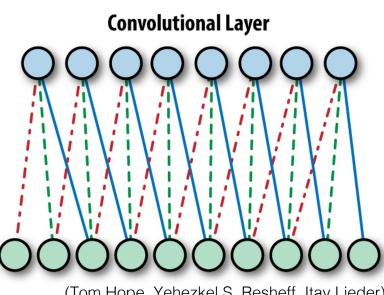
Subsequent units receive input from ALL units in the previous layer

10 inputs, 3 outputs = $10 \times 3 + 3$ (bias) = 34 weights

Exploit locality of patterns

- Each unit receives inputs from only few ٠ units (3 in this case) in the previous layer
- The pattern of weights slides on ٠ (convolves) the input





(Tom Hope, Yehezkel S. Resheff, Itay Lieder)

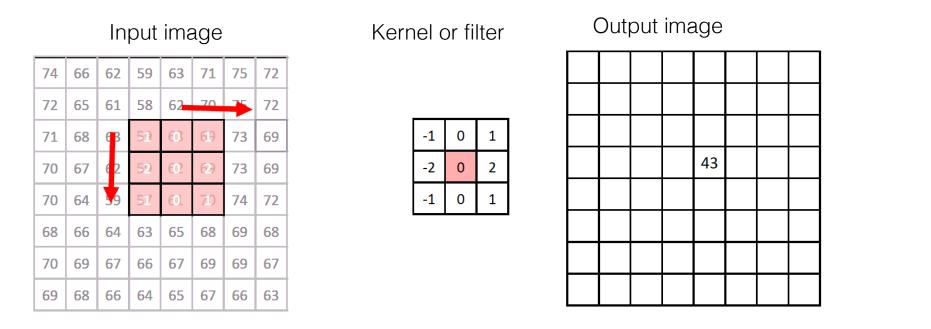
Adapted from Nicola Strisciuglio

Convolution operation (cross-correlation, used in deep learning)

Convolution
$$y[m,n] = x[m,n] * h[m,n] = \sum_{k} \sum_{l} x[k,l]h[m-k,n-l]$$

Cross-correlation $y[m,n] = x[m,n] * h[m,n] = \sum_{k} \sum_{l} x[k,l]h[m+k,n+l]$

Cross-correlation is always implemented, even if it is called convolution

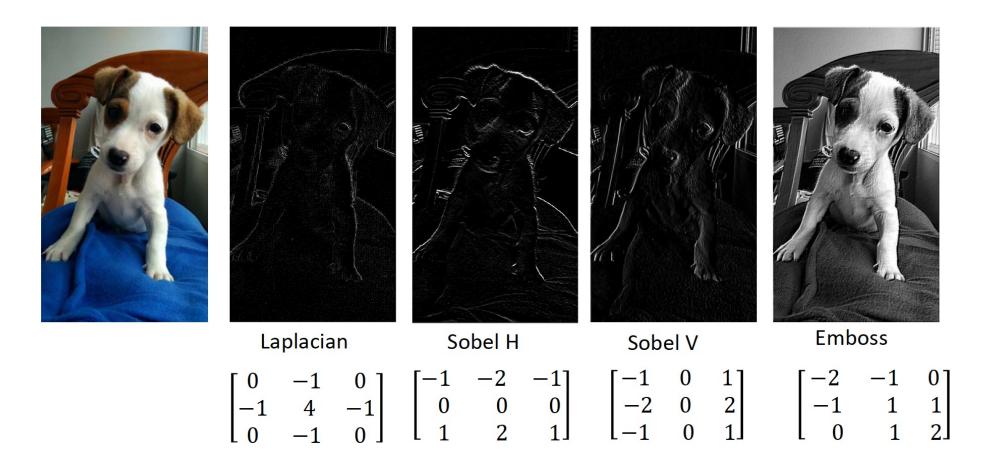


(-1) * 59 + 0 * 63 + 1 * 69 + (-2) * 59 + 0 * 62 + 2 * 69 + (-1) * 57 + 0 * 61 + 1 * 70 = 43

Page 26 universidad

Adapted from CVBLAB

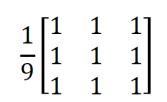
Convolution operation

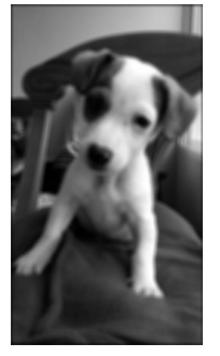


Adapted from CVBLAB

Convolution operation

Blurr





Severe blurr

Enhancement

[-1	-1	-1]
-1	9	-1
L-1	-1	

Adapted from CVBLAB

universidad ^{de}león

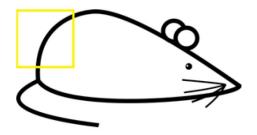
Convolution operation: how low level features are detected

0	0	0	0	0	30	0	
0	0	0	0	30	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	0	0	0	0	

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

	0	0	0	0	0	30	0
	0	0	0	0	30	0	0
*	0	0	0	30	0	0	0
Ŧ	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	0	0	0	0

No response in this receptive field



universidad ^{de}león

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

	0	0	0	0	0	30	0
	0	0	0	0	30	0	0
*	0	0	0	30	0	0	0
ጥ	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
	0	0	0	0	0	0	0

High response in this receptive field

Convolution operation

w ₁	W ₂	W ₃
W_4	W 5	w ₆
W ₇	W 8	W ₉

Python commands for convolution operation:

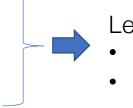
- Python: conv_forward
- TensorFlow: tf.nn.conv2d
- Keras: Conv2D
- PyTorch: torch.nn.functional.conv2d

The kernel weights are learned!

Exploit locality of patterns (learn local relationships of pixels)

Sparcity of connections

Shared weights for all the image: translation invariance



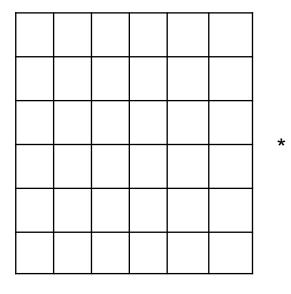
Less parameters:

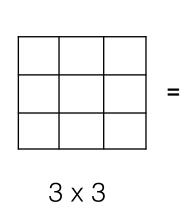
- Less prone to overfitting
- Less memory requirements

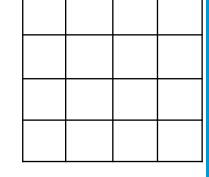
Convolution operation

What are the dimensions of the activiation map if a 6x6 image is convolved with a 3x3 filter?

n - f + 1 = 6 - 3 + 1 = 4







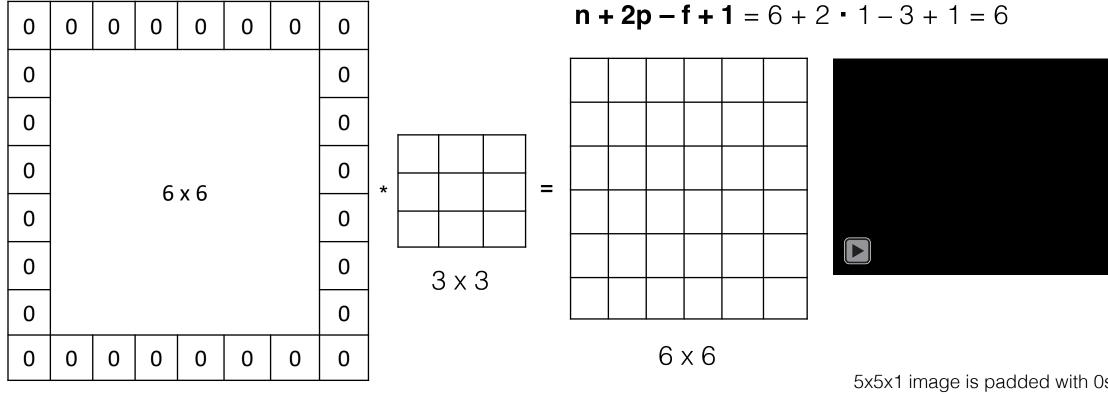
 4×4

Issues:

- Shrinking output
- Throw away information from the edges

Padding (Zero padding)

Hyperparameter: p (in this case p=1)



5x5x1 image is padded with 0s to create a 6x6x1 image (Sumit Saha, 2018)

Paddin: Valid convolutions and same convolutions

Valid convolution: no padding

Same convolution: Pad so that output size is the same as the input size

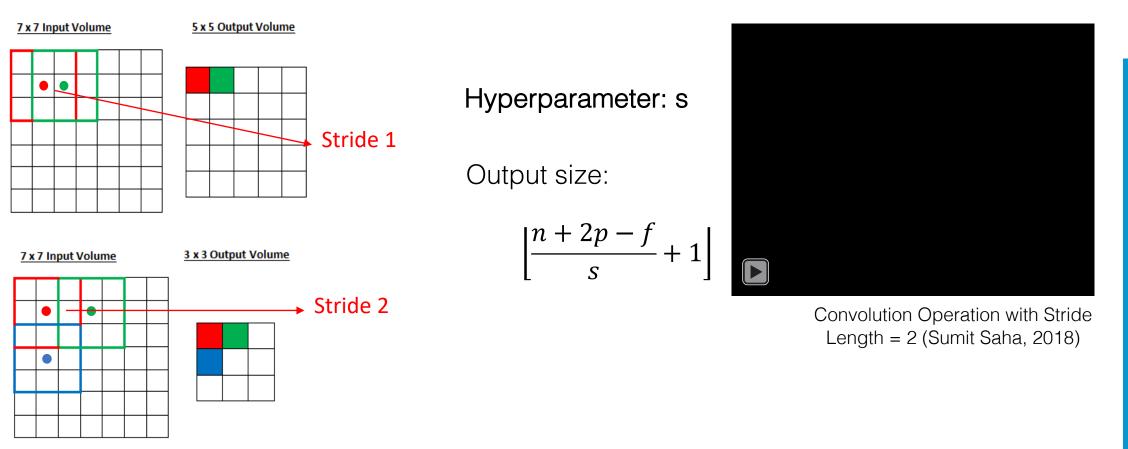
$$n+2p-f+1=n$$

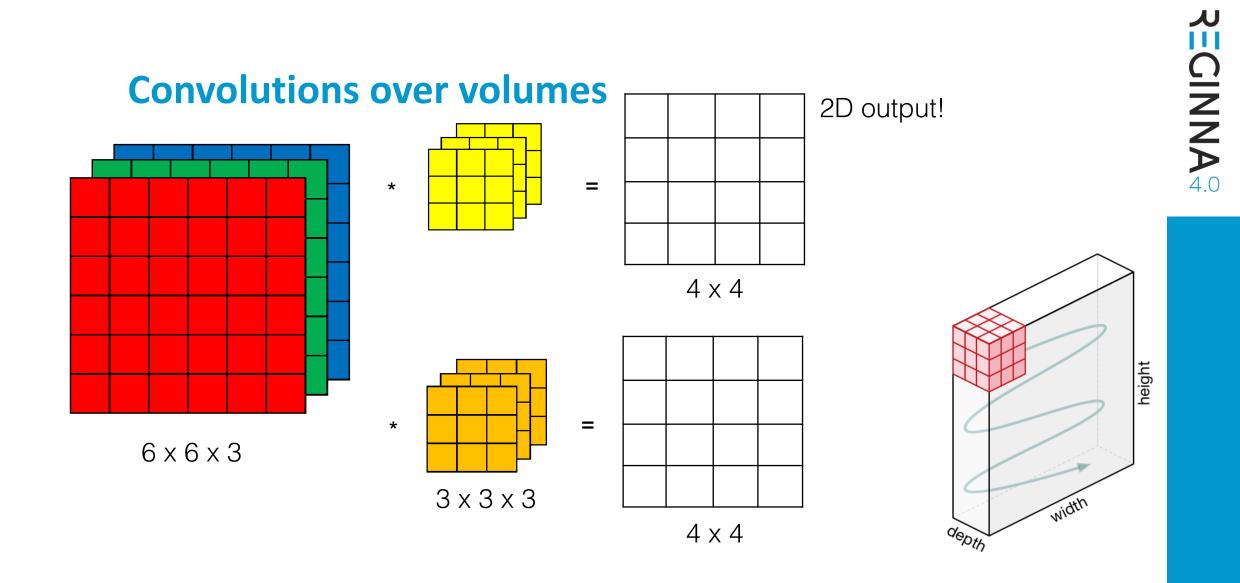
$$p = \frac{f-1}{2}$$

Filter size **f** is *usually* odd:

- Natural padding region
- Central position

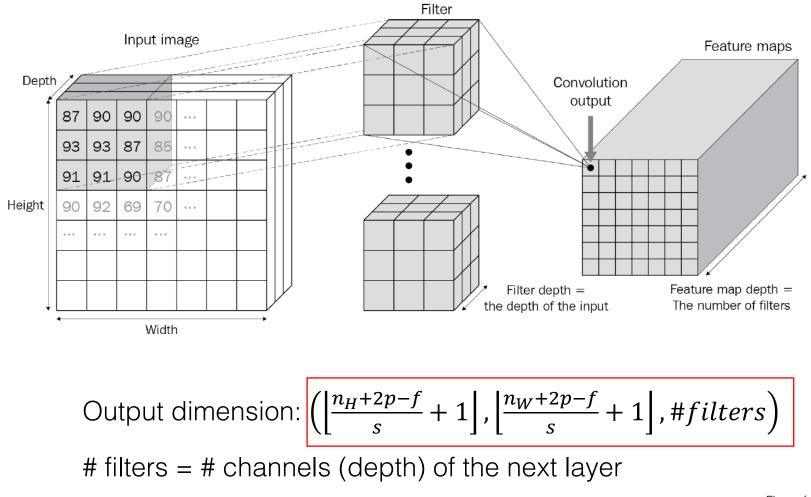
Stride





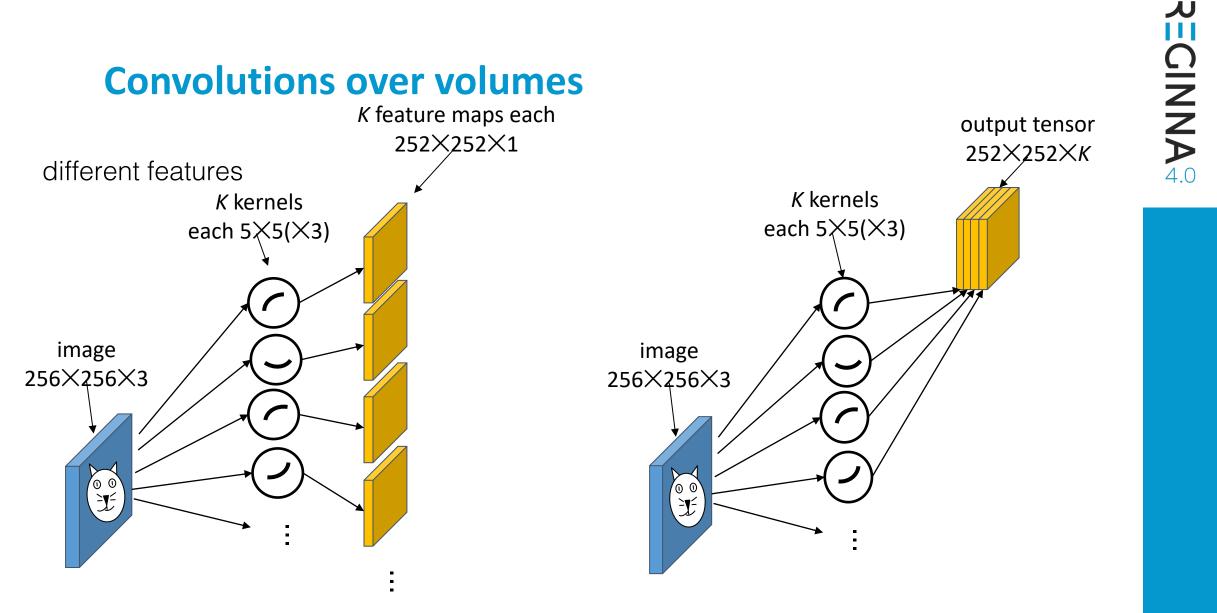
universidad deleón

Convolutions over volumes



universidad ^{de}león

Figure from Modern Computer Vision with PyTorch

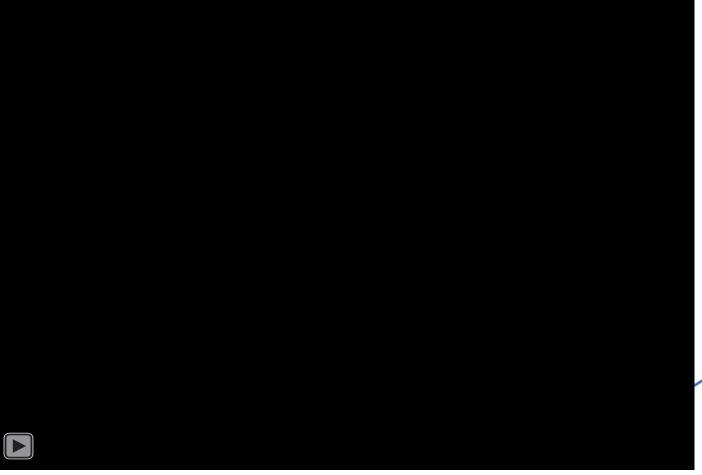


Adapted from CSC Traning for Brilliant Minds

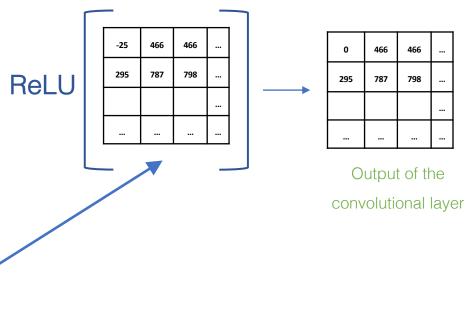
Page 37

universidad ^{de}león

One layer of a CNN



Bias is a real number. The same bias to all elements of the output.



Other example: https://cs231n.github.io/assets/conv-demo/index.html

Page 38 universidad

One layer of a CNN: number of parameters

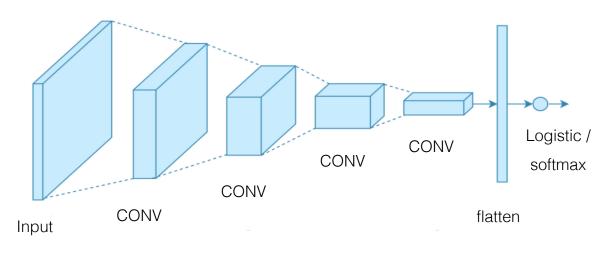
If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

 $3 \times 3 \times 3 + 1$ (bias) = 28 parameters in each filter

 $28 \times 10 = 280$ parameters in total

No matter how big the input image is, the number of parameters remains fixed as 280!

Simple (and incorrectly structured!) CNN example and types of layers in a CNN



•	It isn't conducive to	learning a spatial	hierarchy of features
---	-----------------------	--------------------	-----------------------

• The final feature map is huge -> intense overfitting

As you go deeper, typically height and width decrease gradually and the number of channels (depth) increase

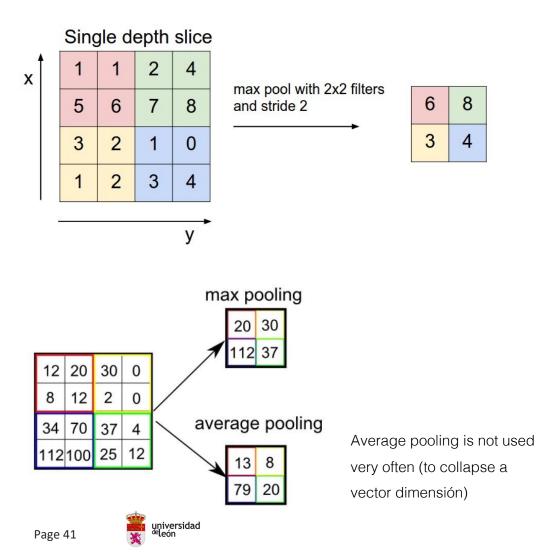
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 28, 28, 1)]	0
conv2d_3 (Conv2D)	(None, 26, 26, 32)	320
conv2d_4 (Conv2D)	(None, 24, 24, 64)	18496
conv2d_5 (Conv2D)	(None, 22, 22, 128)	73856
flatten_1 (Flatten)	(None, 61952)	0
dense_1 (Dense)	(None, 10)	619530
Total params: 712,202 Trainable params: 712,202 Non-trainable params: 0		

Types of layers:

- Convolution (CONV)
- Pooling (POOL)
- Fully connected (FC)

universidad ^{de}león

Pooling layers



Down sampling of feature maps:

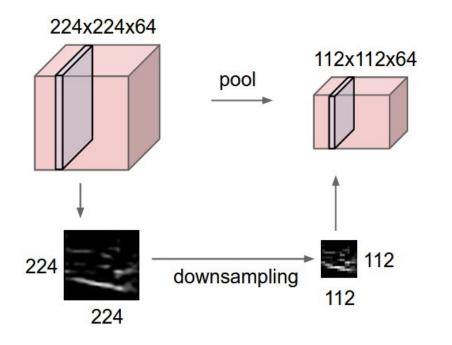
- Select one value for a f x f window
- If a feature exists in a region it is preserved after maxpooling

Hyperparameters:

- f: filter size
- s: stride
- Max, average, L2-norm,... pooling
- (Usually there is no padding)

No parameters to learn!

Pooling layers



Reduce spatial dimensions (not depth)

- Increase computation efficiency
- Tolerance to small translations/noise
- Less risk to overfit

Fully connected layer

Α 5

Subsequent units receive input from ALL units in the previous layer FC layers have high number of parameters Softmax function or logistic regression is applied to the last FC layer

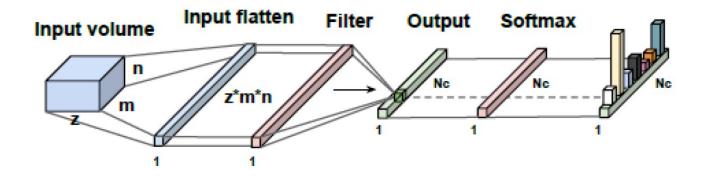
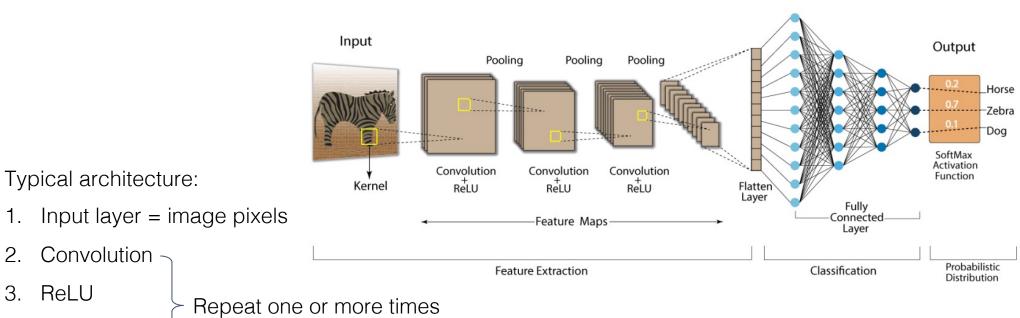


Figure by Diego Unzueta

universidad ^{de}león

CNN example



Convolution Neural Network (CNN)

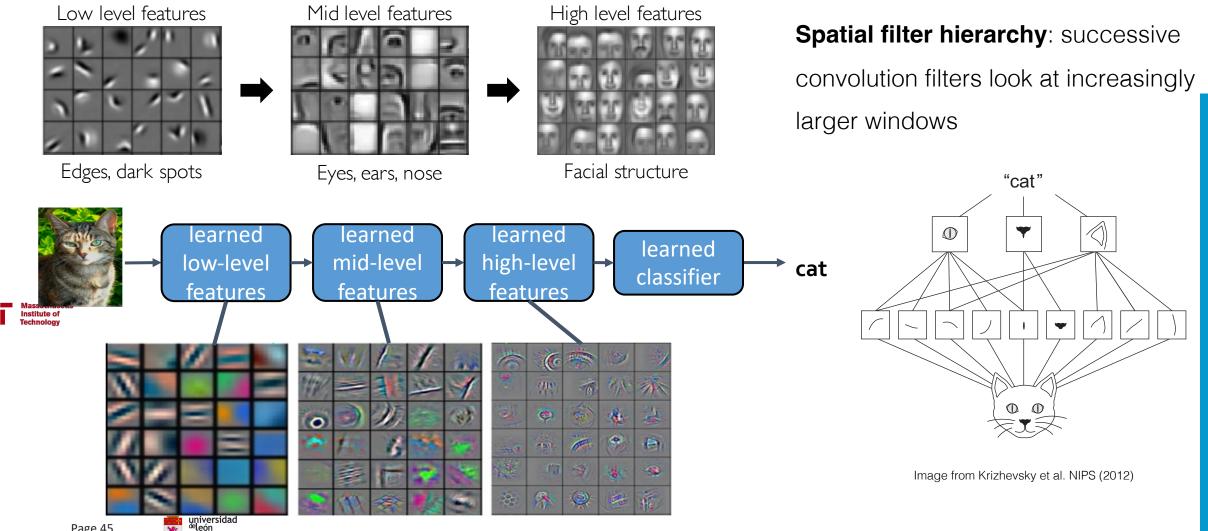
- Pooling 4.
- One or more fully connected layers (+ReLU) 5.
- Final fully connected layer to get to the number of classes we want 6.
- 7. Softmax to get probability distribution over classes

1.

2.

З.

Intuition of convolution in layers of a CNN



Resources

CNN Explainer. Learn Convolutional Neural Network (CNN) in your browser! https://poloclub.github.io/cnn-explainer/

Issues with CNNs

Data augmentation

Overfitting is caused by having too few samples to learn from.

Data augmentation generates more training data from existing training samples.

Data is augmented via random transformations that yield believable-looking images. It helps expose the model to more aspects of the data and generalize better.

100 120 140

100 120 140

Reshapes it to (1, 150, 150, 3)

Generates batches of

loop at some point!

100 120

Page 48

Data augmentation: dropout

Still the inputs for the model would be heavily intercorrelated.

Solution: Add a **dropout** layer right before the fully connected layer.

Randomly sets to 0 a fraction of the inputs to the fully connected layer **during training time**, to prevent overfitting.

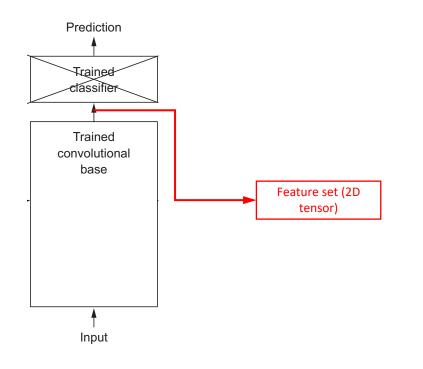
Using pretrained CNNs

- **Pretrained network**: Saved network that was previously trained on a large dataset.
- Pretrained networks publicly available (e.g. in the module keras.applications).
- Examples:
 - Xception.
 - VGG19
 - VGG19
 - ResNet50
 - InceptionV3
 - ...

Page 50

Using pretrained CNNs: Feature extraction (I)

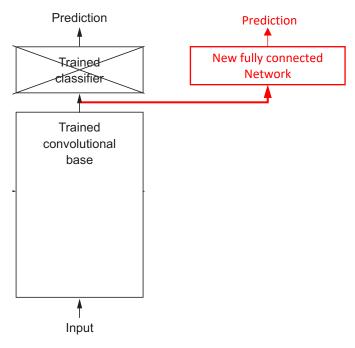
- Consists of using a pretrained network to extract features from new images using its *convolutional base*.
- These features are then run through a new classifier, which is trained from scratch.



Using pretrained CNNs: Feature extraction (II)

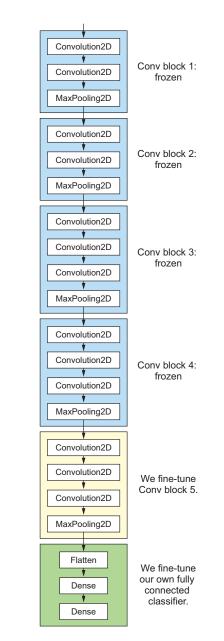
Alternative:

- Add fully connected layers on top of the convolutional base.
- Freeze the convolutional base (i.e. prevent its weights to be changed).
- Train the model with the frozen convolutional base using data augmentation.



Using pretrained CNNs: fine tuning

- Consists on freezing the convolutional base **except a few layers on top** of it, and jointly training this non-frozen part and the fully connected layers added on top of it.
- Only the weights on the top layers of the convolutional base will get adapted (fine-tuned) to this problem).



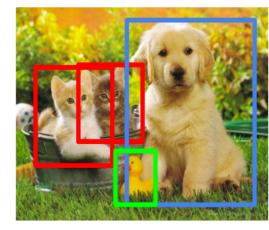
Some applications

Beyond classification

Semantic Segmentation

CAT

Object Detection



CAT, DOG, DUCK

Instance Segmentation

CAT, DOG, DUCK

Image Captioning

The cat is in the grass.

Data, data, data!

MNIST (Handwritten digits)

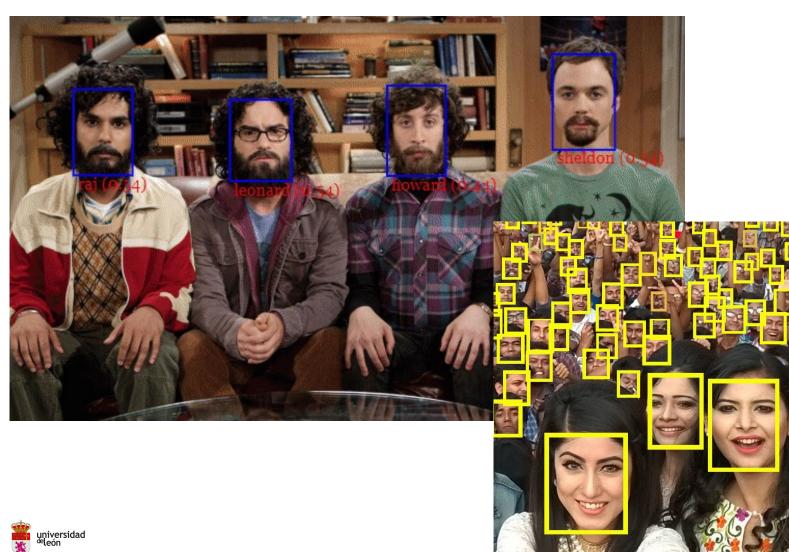
Page 56

ImageNet 22K categories, 14M images

Places (Natural Scenes)

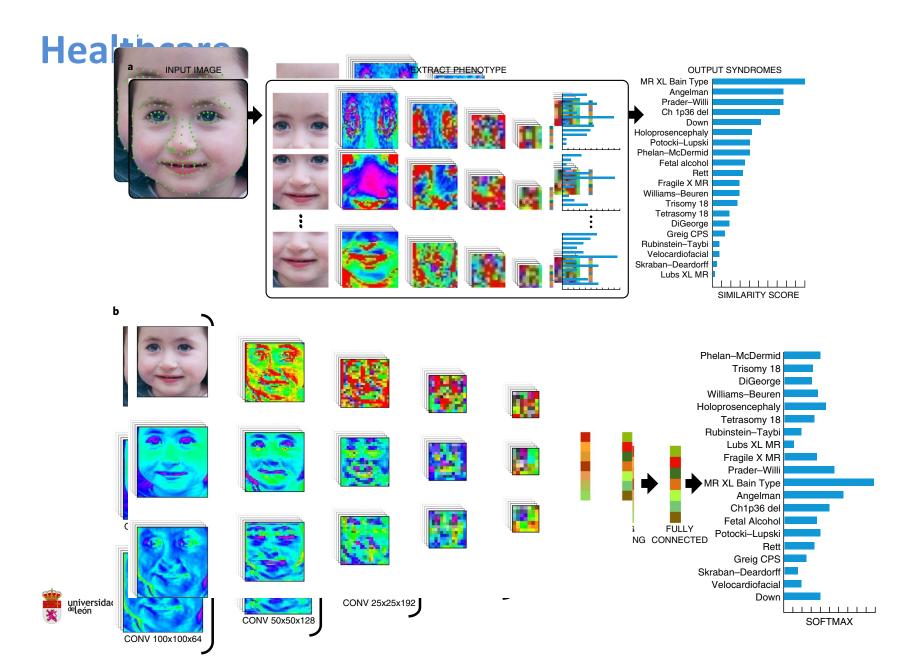
airplane	Super-	4		X	*	1	2	-17-		-
automo	bile 🔤				5	No.	-		1.0	*
bird	Wa	5	2		1	4	1	Y	1	4
cat	2.2		1	de la		1	E.	A.	No.	2
deer	L.	4	¥.	R	1	Y	Y	1	THE REAL	5
dog	57		-		1 A			C.	A	1e
frog	-		-		2 💎		and the second	ST.		See.
horse	-	-	1	2	P	171		2 a	G	1
ship	-		dirit.	-	<u>144</u>		2	150	1	<u>.</u>
truck			1					1	210	dia
CIFAR-10 and CIFAR-100										
	10 or 100 categories, 60K images									es

Face detection



Self driving cars

universidad ^{de}león

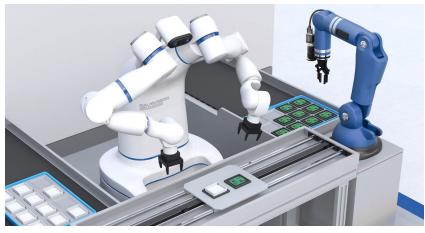


Industry 4.0



Inspection

Indoor augmented reality



Page 60

Robotics

Figure from https://www.sick.com/at/en/deep-learning-as-motor-for-industry-40/w/blog-deep-learning/ https://insidernavigation.com/ar-indoor-navigation/ https://tanhungha.com.vn/ung-dung-cua-camera-vision-cho-vision-guided-robotics-n290.html

https://www.anybotics.com/computer-vision-and-synthetic-data-are-key-to-training-autonomous-robots/

Prediction of wear of cutting tools operating in a single pass across thick plates

RECINNA 4.0

Cutting machine

Cutting using plasma or oxy-fuel

Milling the edge of the plate in order to leave the weld profiled

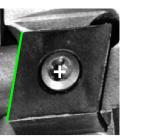
Wear monitoring of cutting tools operating in a **single pass** across **thick plates**

Very aggressive

After every pass

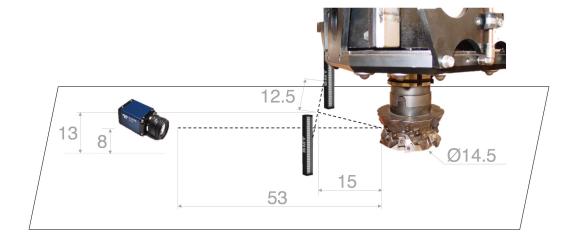
Of all inserts

Unbroken



Broken

Breakage evaluation



Wear evaluation:

Shape description Texture description

RECINNA

Laura Fernández Robles Universidad de León (Spain) I.fernandez@unileon.es

eit Manufacturing

Funded by the European Union

www.reginna4-0.eu