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Credits
• Book: Deep Learning with Python (François Chollet).

• https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

• https://deeplearning4j.org/neuralnet-overview

• MIT course: Introduction to Deep Learning: http://introtodeeplearning.com/

• https://brilliant.org/wiki/convolutional-neural-network/

• Convolutional Neural Networks for Visual Recognition (Stanford University): 
http://cs231n.stanford.edu/

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://deeplearning4j.org/neuralnet-overview
http://introtodeeplearning.com/
https://brilliant.org/wiki/convolutional-neural-network/
http://cs231n.stanford.edu/
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The task in machine learning
Example:

Which US president is this?

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/30/18

Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a par ticular class
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x(i) = [x(i)
1 , x(i)

2 , . . . , x(i)
n ]

<latexit sha1_base64="Dnw3I2oLmSY4t+Wlo9KlZv9rJDs=">AAACHHicbZBJSwNBEIV7XGPcoh69NAZBQcJMFNSDEPTiMYJZIBlDT6fGNOlZ6K6RhCF/Rf+Mntxugv/GzqK4vdPX772GqvJiKTTa9rs1NT0zOzefWcguLi2vrObW1qs6ShSHCo9kpOoe0yBFCBUUKKEeK2CBJ6Hmdc+Gee0GlBZReIn9GNyAXYfCF5yhsVq54yZCDz0/7Q2u0h2xOzhp0N6YWs7eJxX3mrIdof4yQuq2cnm7YI9E/4IzgTyZqNzKPTXbEU8CCJFLpnXDsWN0U6ZQcAmDbDPREDPeZdfQMBiyALSbjlYc0G0/UhQ7QEfv792UBVr3A890AoYd/Tsbmv9ljQT9IzcVYZwghNxUTOYnkmJEh5eibaGAo+wbYFwJMyXlHaYYR3PPrFnf+b3sX6gWC85+wb44yJdOJ4fIkE2yRXaIQw5JiZyTMqkQTu7IA3khr9atdW89Ws/j6pQ1+bNBfsh6+wAhQqCm</latexit>

x1
<latexit sha1_base64="PyXjv0fhkq1+rVwGv3IbNMSiB7w=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVm0ESXRDcuMcpPAhPSKXegoZ2ZtB0jmfAGujLqzifyBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jeTBL0JR1GPOSMGju6e+x7/XLFrbpzkWXwcqhArka//NkbxCyVGBkmqNZdz02Mn1FlOBM4LfVSjQllYzrErsWIStR+Nl91Sk7CWBEzQjJ//85mVGo9kYHNSGpGetGbDf/zuqkJL/2MR0lqMGI2Yr0wFcTEZNaYDLhCZsTEAmWK2y0JG1FFmbF3Kdn63mLZZWjVqt5ZtXZ7Xqlf5YcowhEcwyl4cAF1uIEGNIHBEJ7hDd6d0HlyXpzXn2jByf8cwh85H9/+g4s5</latexit>

x2
<latexit sha1_base64="kyo2feAsh7L0RB+1xtZdOGHkqhY=">AAAB5HicbZDLTgIxFIZP8YZ4Q126aSQmrsgMmuiS6MYlRrkkMCGdcgYaOpe0HSOZ8Aa6MurOJ/IFfBsLzkLBf/X1/H+T8x8/kUIbx/kihZXVtfWN4mZpa3tnd6+8f9DScao4NnksY9XxmUYpImwaYSR2EoUs9CW2/fH1zG8/oNIiju7NJEEvZMNIBIIzY0d3j/1av1xxqs5cdBncHCqQq9Evf/YGMU9DjAyXTOuu6yTGy5gygkuclnqpxoTxMRti12LEQtReNl91Sk+CWFEzQjp//85mLNR6Evo2EzIz0ovebPif101NcOllIkpSgxG3EesFqaQmprPGdCAUciMnFhhXwm5J+Ygpxo29S8nWdxfLLkOrVnXPqrXb80r9Kj9EEY7gGE7BhQuoww00oAkchvAMb/BOAvJEXsjrT7RA8j+H8Efk4xsAEIs6</latexit>

ŷ1
<latexit sha1_base64="m7pP3YUTsXud70ODDKz56iEeZQk=">AAAB7HicbZC9TsMwFIWd8lfKX4GRxaJCYqqSggRjBQtjkeiP1EaV4940Vh07sh2kKMpbwISAjafhBXgb3JIBWs70+Z5j6Z4bJJxp47pfTmVtfWNzq7pd29nd2z+oHx71tEwVhS6VXKpBQDRwJqBrmOEwSBSQOODQD2a3c7//CEozKR5MloAfk6lgIaPE2NFwFBGTZ8U494pxveE23YXwKnglNFCpzrj+OZpImsYgDOVE66HnJsbPiTKMcihqo1RDQuiMTGFoUZAYtJ8vVi7wWSgVNhHgxft3Niex1lkc2ExMTKSXvfnwP2+YmvDaz5lIUgOC2oj1wpRjI/G8OZ4wBdTwzAKhitktMY2IItTY+9RsfW+57Cr0Wk3votm6v2y0b8pDVNEJOkXnyENXqI3uUAd1EUUSPaM39O4I58l5cV5/ohWn/HOM/sj5+AaDvI8T</latexit>

ŷ2
<latexit sha1_base64="0cACMUw9We+Nt1Ii3scgBQdRqkw=">AAAB7HicbZC9TsMwFIVvyl8pfwVGFosKialKChKMFSyMRaI/UhtVjus0Vh07sh2kKMpbwISAjafhBXgb3JIBWs70+Z5j6Z4bJJxp47pfTmVtfWNzq7pd29nd2z+oHx71tEwVoV0iuVSDAGvKmaBdwwyng0RRHAec9oPZ7dzvP1KlmRQPJkuoH+OpYCEj2NjRcBRhk2fFOG8V43rDbboLoVXwSmhAqc64/jmaSJLGVBjCsdZDz02Mn2NlGOG0qI1STRNMZnhKhxYFjqn288XKBToLpUImomjx/p3Ncax1Fgc2E2MT6WVvPvzPG6YmvPZzJpLUUEFsxHphypGRaN4cTZiixPDMAiaK2S0RibDCxNj71Gx9b7nsKvRaTe+i2bq/bLRvykNU4QRO4Rw8uII23EEHukBAwjO8wbsjnCfnxXn9iVac8s8x/JHz8Q2FO48U</latexit>

x3
<latexit sha1_base64="q4heLLq6IovL2zxnYsxYDinh3sw=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Y1LjIIk0JDpcAsTpp1mZmokDW+gK6PufCJfwLdxwC4UPKtv7jmT3HODRHBtXPfLKaysrq1vFDdLW9s7u3vl/YO2lqli2GJSSNUJqEbBY2wZbgR2EoU0CgTeB+OrmX//gEpzGd+ZSYJ+RIcxDzmjxo5uH/v1frniVt25yDJ4OVQgV7Nf/uwNJEsjjA0TVOuu5ybGz6gynAmclnqpxoSyMR1i12JMI9R+Nl91Sk5CqYgZIZm/f2czGmk9iQKbiagZ6UVvNvzP66YmvPAzHiepwZjZiPXCVBAjyawxGXCFzIiJBcoUt1sSNqKKMmPvUrL1vcWyy9CuVb16tXZzVmlc5ocowhEcwyl4cA4NuIYmtIDBEJ7hDd6d0HlyXpzXn2jByf8cwh85H98Bjos7</latexit>

z1,1
<latexit sha1_base64="IxEMDSejc7LS52ranI+IFBzJJzY=">AAAB6HicbZDLSgMxFIbP1Futt6pLN8EiuJAyUUGXRTcuK9gLtEPJpGfa2MyFJCPUoe+gK1F3Po8v4NuY1llo67/6cv4/cP7jJ1Jo47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqjg0ey1i1faZRiggbRhiJ7UQhC32JLX90PfVbD6i0iKM7M07QC9kgEoHgzNhR67GX0RM66ZUrbtWdiSwCzaECueq98me3H/M0xMhwybTuUDcxXsaUEVzipNRNNSaMj9gAOxYjFqL2stm6E3IUxIqYIZLZ+3c2Y6HW49C3mZCZoZ73psP/vE5qgksvE1GSGoy4jVgvSCUxMZm2Jn2hkBs5tsC4EnZLwodMMW7sbUq2Pp0vuwjN0yo9q57enldqV/khinAAh3AMFC6gBjdQhwZwGMEzvMG7c+88OS/O60+04OR/9uGPnI9vmIaMuA==</latexit>

z1,2
<latexit sha1_base64="VmU3T480BLiUuDkyj/wbLWi8VVM=">AAAB6HicbZC9TsMwFIVv+C3lr8DIYlEhMaAqKUgwVrAwFon+SG1UOe5Na+o4ke0glajvABMCNp6HF+BtcEsGaDnT53uOpXtukAiujet+OUvLK6tr64WN4ubW9s5uaW+/qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR9dRvPaDSPJZ3ZpygH9GB5CFn1NhR67GXeafVSa9UdivuTGQRvBzKkKveK312+zFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGNR0gi1n83WnZDjMFbEDJHM3r+zGY20HkeBzUTUDPW8Nx3+53VSE176GZdJalAyG7FemApiYjJtTfpcITNibIEyxe2WhA2poszY2xRtfW++7CI0qxXvrFK9PS/XrvJDFOAQjuAEPLiAGtxAHRrAYATP8Abvzr3z5Lw4rz/RJSf/cwB/5Hx8A5oFjLk=</latexit>

z1,3
<latexit sha1_base64="QdM3P1sbHRqT6XtfGOhDzv0ynVE=">AAAB6HicbZDLTsJAFIZP8YZ4Q126mUhMXBjSgokuiW5cYiKXBBoyHU5hZHrJzNQEm76Droy683l8Ad/GAbtQ8F99c/5/kvMfLxZcadv+sgorq2vrG8XN0tb2zu5eef+graJEMmyxSESy61GFgofY0lwL7MYSaeAJ7HiT65nfeUCpeBTe6WmMbkBHIfc5o9qMOo+D1DmrZ4Nyxa7ac5FlcHKoQK7moPzZH0YsCTDUTFCleo4dazelUnMmMCv1E4UxZRM6wp7BkAao3HS+bkZO/EgSPUYyf//OpjRQahp4JhNQPVaL3mz4n9dLtH/ppjyME40hMxHj+YkgOiKz1mTIJTItpgYok9xsSdiYSsq0uU3J1HcWyy5Du1Z16tXa7XmlcZUfoghHcAyn4MAFNOAGmtACBhN4hjd4t+6tJ+vFev2JFqz8zyH8kfXxDZuEjLo=</latexit>

z1,4
<latexit sha1_base64="Yr5mKptQYPhiAbHzI4QGZ68Jnos=">AAAB6HicbZDLTsJAFIZP8YZ4Q126mUhMXBjSIokuiW5cYiKXBBoyHU5hZHrJzNQEG95BV0bd+Ty+gG/jULtQ8F99c/5/kvMfLxZcadv+sgorq2vrG8XN0tb2zu5eef+graJEMmyxSESy61GFgofY0lwL7MYSaeAJ7HiT67nfeUCpeBTe6WmMbkBHIfc5o9qMOo+D1Dmrzwblil21M5FlcHKoQK7moPzZH0YsCTDUTFCleo4dazelUnMmcFbqJwpjyiZ0hD2DIQ1QuWm27oyc+JEkeowke//OpjRQahp4JhNQPVaL3nz4n9dLtH/ppjyME40hMxHj+YkgOiLz1mTIJTItpgYok9xsSdiYSsq0uU3J1HcWyy5Du1Z1zqu123qlcZUfoghHcAyn4MAFNOAGmtACBhN4hjd4t+6tJ+vFev2JFqz8zyH8kfXxDZ0DjLs=</latexit>

z2,1
<latexit sha1_base64="Bl+cC7koElENYFgtWxtwSq+HPoc=">AAAB6HicbZC9TsMwFIVv+C3lr8DIYlEhMaAqKUgwVrAwFon+SG1UOe5Na+o4ke0glajvABMCNp6HF+BtcEsGaDnT53uOpXtukAiujet+OUvLK6tr64WN4ubW9s5uaW+/qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR9dRvPaDSPJZ3ZpygH9GB5CFn1NhR67GXVU+9Sa9UdivuTGQRvBzKkKveK312+zFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGNR0gi1n83WnZDjMFbEDJHM3r+zGY20HkeBzUTUDPW8Nx3+53VSE176GZdJalAyG7FemApiYjJtTfpcITNibIEyxe2WhA2poszY2xRtfW++7CI0qxXvrFK9PS/XrvJDFOAQjuAEPLiAGtxAHRrAYATP8Abvzr3z5Lw4rz/RJSf/cwB/5Hx8A5oHjLk=</latexit>

z2,2
<latexit sha1_base64="JXF2hAHCdU1x44i9EoVY1qnHtfQ=">AAAB6HicbZDLTsJAFIZP8YZ4Q126mUhMXBjSFhNdEt24xEQuCTRkOpzCyPSSmakJNryDroy683l8Ad/GAbtQ8F99c/5/kvMfPxFcadv+sgorq2vrG8XN0tb2zu5eef+gpeJUMmyyWMSy41OFgkfY1FwL7CQSaegLbPvj65nffkCpeBzd6UmCXkiHEQ84o9qM2o/9zD1zp/1yxa7ac5FlcHKoQK5Gv/zZG8QsDTHSTFCluo6daC+jUnMmcFrqpQoTysZ0iF2DEQ1Redl83Sk5CWJJ9AjJ/P07m9FQqUnom0xI9UgterPhf1431cGll/EoSTVGzESMF6SC6JjMWpMBl8i0mBigTHKzJWEjKinT5jYlU99ZLLsMLbfq1Kru7XmlfpUfoghHcAyn4MAF1OEGGtAEBmN4hjd4t+6tJ+vFev2JFqz8zyH8kfXxDZuGjLo=</latexit>

z2,4
<latexit sha1_base64="FUefxj5PLzobqYFUQOS5cjv4HXk=">AAAB6HicbZDLTsJAFIZP8YZ4Q126mUhMXBjSIokuiW5cYiKXBBoyHU5hZHrJzNQEG95BV0bd+Ty+gG/jULtQ8F99c/5/kvMfLxZcadv+sgorq2vrG8XN0tb2zu5eef+graJEMmyxSESy61GFgofY0lwL7MYSaeAJ7HiT67nfeUCpeBTe6WmMbkBHIfc5o9qMOo+DtHZWnw3KFbtqZyLL4ORQgVzNQfmzP4xYEmComaBK9Rw71m5KpeZM4KzUTxTGlE3oCHsGQxqgctNs3Rk58SNJ9BhJ9v6dTWmg1DTwTCageqwWvfnwP6+XaP/STXkYJxpDZiLG8xNBdETmrcmQS2RaTA1QJrnZkrAxlZRpc5uSqe8sll2Gdq3qnFdrt/VK4yo/RBGO4BhOwYELaMANNKEFDCbwDG/wbt1bT9aL9foTLVj5n0P4I+vjG56EjLw=</latexit>

z2,3
<latexit sha1_base64="XQiGEu0QZ4RlUmgFvDGvf+THj2E=">AAAB6HicbZDLTsJAFIZP8YZ4Q126mUhMXBjSgokuiW5cYiKXBBoyHU5hZHrJzNQEm76Droy683l8Ad/GAbtQ8F99c/5/kvMfLxZcadv+sgorq2vrG8XN0tb2zu5eef+graJEMmyxSESy61GFgofY0lwL7MYSaeAJ7HiT65nfeUCpeBTe6WmMbkBHIfc5o9qMOo+DtHZWzwblil215yLL4ORQgVzNQfmzP4xYEmComaBK9Rw71m5KpeZMYFbqJwpjyiZ0hD2DIQ1Quel83Yyc+JEkeoxk/v6dTWmg1DTwTCageqwWvdnwP6+XaP/STXkYJxpDZiLG8xNBdERmrcmQS2RaTA1QJrnZkrAxlZRpc5uSqe8sll2Gdq3q1Ku12/NK4yo/RBGO4BhOwYELaMANNKEFDCbwDG/wbt1bT9aL9foTLVj5n0P4I+vjG50FjLs=</latexit>

ŷ3
<latexit sha1_base64="DcyrzAGlwPPUqCWnBUHTD2zaPBc=">AAAB7HicbZC9TsMwFIWd8lfKX4GRxaJCYqqSFgnGChbGItFSKY0qx3Uaq44d2TdIVZS3gAkBG0/DC/A2uCUDtJzp8z3H0j03TAU34LpfTmVtfWNzq7pd29nd2z+oHx71jco0ZT2qhNKDkBgmuGQ94CDYINWMJKFgD+H0Zu4/PDJtuJL3MEtZkJCJ5BGnBOzIH8YE8lkxytvFqN5wm+5CeBW8EhqoVHdU/xyOFc0SJoEKYozvuSkEOdHAqWBFbZgZlhI6JRPmW5QkYSbIFysX+CxSGkPM8OL9O5uTxJhZEtpMQiA2y958+J/nZxBdBTmXaQZMUhuxXpQJDArPm+Mx14yCmFkgVHO7JaYx0YSCvU/N1veWy65Cv9X02s3W3UWjc10eoopO0Ck6Rx66RB10i7qohyhS6Bm9oXdHOk/Oi/P6E6045Z9j9EfOxzeGuo8V</latexit>

ŷ4
<latexit sha1_base64="0eBEh+/k/5Zt6/FugHn9aiYV9/o=">AAAB7HicbZC9TsMwFIUdfkv5KzCyWFRITFVSKsFYwcJYJPojtVHluE5j1bEj+wYpivIWMCFg42l4Ad4Gt2SAljN9vudYuucGieAGXPfLWVvf2NzaruxUd/f2Dw5rR8c9o1JNWZcqofQgIIYJLlkXOAg2SDQjcSBYP5jdzv3+I9OGK/kAWcL8mEwlDzklYEfDUUQgz4px3irGtbrbcBfCq+CVUEelOuPa52iiaBozCVQQY4aem4CfEw2cClZUR6lhCaEzMmVDi5LEzPj5YuUCn4dKY4gYXrx/Z3MSG5PFgc3EBCKz7M2H/3nDFMJrP+cySYFJaiPWC1OBQeF5czzhmlEQmQVCNbdbYhoRTSjY+1RtfW+57Cr0mg3vstG8b9XbN+UhKugUnaEL5KEr1EZ3qIO6iCKFntEbenek8+S8OK8/0TWn/HOC/sj5+AaIOY8W</latexit>

…
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Using machine learning: Manual feature extraction

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Manual Feature Extraction 

Define featuresDomain knowledge Detect features 
to classify 

[2]

Problems?
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Representation learning: where CNNs are great!

A classical supervised pattern recognition pipeline
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Representation learning: where CNNs are great!

12 de 52

Features are no longer hand-engineered, but 
learned directly from data (via optimization)

all together in a CNN Adapted from Nicola Strisciuglio
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Representation learning: where CNNs are great!

13 de 52

Adapted from Nicola Strisciuglio

Modern Computer Vision with PyTorch
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Neural Networks
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Neural Networks (NN): single layer perceptrons
Weighted linear combination of feature values and weights can be illustrated as a network

Adjusting weights moves the location, orientation, and steepness of cliff

Adapted from Stuart Russell
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Neural Networks (NN): single layer perceptrons

https://www.jeremyjordan.me/intro-to-
neural-networks/

Bias
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Neural Networks (NN): single layer perceptrons

Adapted from Philipp Koehn

Linear models cannot model XOR
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Neural Networks (NN): multiple layers
Add an intermediate (“hidden”) layer of processing (each arrow is a weight)

Have we gained anything so far? The result of combining linear transformations is also a linear 
transformation

Adapted from Philipp Koehn
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Neural Networks (NN): Non-Linearity
Instead of computing a linear combination, add a non-linear function.

Popular choices of activation functions:

sigmoid is also called the “logistic function”

Adapted from Philipp Koehn
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Neural Networks (NN): single layer perceptrons

https://sumanthrb.com/ml/perceptron/
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Neural Networks (NN): Why “neural“ networks?

Taken from Andrea Palazzi



Page 22

Deep Neural Networks (DNN)
More layers = deep learning

Having multiple processing steps allows complex functions

Adapted from Philipp Koehn
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Convolutional Neural Networks
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Deep learning on large images

nH x nW x 3 = 1000 x 2000 x 3 

𝑥!

𝑥"

𝑥#

ŷ
.
.
.

.

.

.

6 million

1000 x 6 m + 1000 (bias) = >6 billion weights

1000

High number of input parameters -> high number of training parameters:
• Requires lot of data to avoid overfitting
• Requires high memory to train the parameters

Image from Sumit Saha
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Fully Connected vs Convolutional Networks

Subsequent units receive input from ALL 
units in the previous layer

10 inputs, 3 outputs = 10 x 3 + 3 (bias) = 34 
weights

(Tom Hope, Yehezkel S. Resheff, Itay Lieder)
Adapted from Nicola Strisciuglio

Exploit locality of patterns
• Each unit receives inputs from only few 

units (3 in this case) in the previous layer
• The pattern of weights slides on 

(convolves) the input
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Convolution operation (cross-correlation, used in deep learning)

Adapted from CVBLAB

Input image Output imageKernel or filter

Convolution

Cross-correlation

Cross-correlation is always 
implemented, even if it is 
called convolution
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Convolution operation

Adapted from CVBLAB
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Convolution operation

Adapted from CVBLAB

Blurr Severe blurr Enhancement
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Convolution operation: how low level features are 
detected

No response in this receptive field

High response in this receptive field

Adapted from CVBLAB
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Convolution operation
Python commands for convolution operation:

• Python: conv_forward
• TensorFlow: tf.nn.conv2d
• Keras: Conv2D

• PyTorch: torch.nn.functional.conv2d

The kernel weights are learned!

Exploit locality of patterns (learn local relationships of pixels)

Sparcity of connections

Shared weights for all the image: translation invariance

w1 w2 w3

w4 w5 w6

w7 w8 w9

Less parameters:
• Less prone to overfitting
• Less memory requirements
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Convolution operation

What are the dimensions of the 

activiation map if a 6x6 image is 

convolved with a 3x3 filter?

6 x 6

3 x 3
4 x 4

∗ = 

Issues:

• Shrinking output

• Throw away information from the edges

n – f + 1 = 6 – 3 + 1 = 4
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Padding (Zero padding)

5x5x1 image is padded with 0s to 
create a 6x6x1 image (Sumit 

Saha, 2018)6 x 6 -> 8 x 8

3 x 3

0 0 0 0 0 0 0 0

0

6 x 6

0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

∗ = 

6 x 6

Hyperparameter: p (in this case p=1)

n + 2p – f + 1 = 6 + 2・1 – 3 + 1 = 6
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Paddin: Valid convolutions and same convolutions

Same convolution: Pad so that output size is the same as the input size

𝑛 + 2𝑝 − 𝑓 + 1 = 𝑛

𝑝 =
𝑓 − 1
2

Filter size f is usually odd:

• Natural padding region
• Central position

Valid convolution: no padding
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Stride

Hyperparameter: s

Convolution Operation with Stride 
Length = 2 (Sumit Saha, 2018)

Stride 1

Stride 2

Addapted from Eduardo Fidalgo

Output size:

𝑛 + 2𝑝 − 𝑓
𝑠

+ 1




Page 35

Convolutions over volumes 2D output!

6 x 6 x 3
3 x 3 x 3

4 x 4

∗ = 

∗ = 

4 x 4
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Convolutions over volumes

Output dimension: #!$"%&'
(

+ 1 , #"$"%&'
(

+ 1 , #𝑓𝑖𝑙𝑡𝑒𝑟𝑠

# filters = # channels (depth) of the next layer
Figure from Modern Computer Vision with 
PyTorch
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Convolutions over volumes

...

K kernels
each 5✕5(✕3)

output tensor 
252✕252✕K

image 
256✕256✕3

...

...

image 
256✕256✕3

K kernels
each 5✕5(✕3)

K feature maps each 
252✕252✕1

different features

Adapted from CSC Traning for Brilliant 
Minds
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One layer of a CNN
Bias is a real number. The same

bias to all elements of the output.

Figure by Sumit Saha.

-25 466 466 …

295 787 798 …

…

… … … …

ReLU
0 466 466 …

295 787 798 …

…

… … … …

Output of the 

convolutional layer

Other example: https://cs231n.github.io/assets/conv-demo/index.html
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One layer of a CNN: number of parameters

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters 
does that layer have?

3 x 3 x 3 +1 (bias) = 28 parameters in each filter
28 x 10 = 280 parameters in total

No matter how big the input image is, the number of parameters remains fixed as 280!
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Simple (and incorrectly structured!) CNN example and types of 
layers in a CNN

Types of layers:

• Convolution (CONV)
• Pooling (POOL)

• Fully connected (FC)

Input CONV
CONV

CONV
CONV

flatten

Logistic / 

softmax

As you go deeper, typically height and width decrease 
gradually and the number of channels (depth) increase

• It isn’t conducive to learning a spatial hierarchy of features
• The final feature map is huge -> intense overfitting



Page 41

Pooling layers
Down sampling of feature maps:

• Select one value for a f x f window
• If a feature exists in a region it is preserved 

after maxpooling

Hyperparameters:

• f: filter size
• s: stride

• Max, average, L2-norm,… pooling
• (Usually there is no padding)

No parameters to learn!
Average pooling is not used 

very often (to collapse a 
vector dimensión) 



Page 42

Pooling layers

Reduce spatial dimensions (not depth)

• Increase computation efficiency
• Tolerance to small translations/noise

• Less risk to overfit
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Fully connected layer

Subsequent units receive input from ALL units in the previous layer

FC layers have high number of parameters
Softmax function or logistic regression is applied to the last FC layer  

Figure by Diego Unzueta

Figure from CVBLAB



Page 44

CNN example

Typical architecture:
1. Input layer = image pixels

2. Convolution

3. ReLU

4. Pooling

5. One or more fully connected layers (+ReLU)
6. Final fully connected layer to get to the number of classes we want

7. Softmax to get probability distribution over classes

Repeat one or more times
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Intuition of convolution in layers of a CNN

Image from Krizhevsky et al. NIPS (2012)

123Introduction to convnets

This key characteristic gives convnets two interesting properties:

� The patterns they learn are translation invariant. After learning a certain pattern in
the lower-right corner of a picture, a convnet can recognize it anywhere: for
example, in the upper-left corner. A densely connected network would have to
learn the pattern anew if it appeared at a new location. This makes convnets
data efficient when processing images (because the visual world is fundamentally
translation invariant): they need fewer training samples to learn representations
that have generalization power.

� They can learn spatial hierarchies of patterns (see figure 5.2). A first convolution layer
will learn small local patterns such as edges, a second convolution layer will
learn larger patterns made of the features of the first layers, and so on. This
allows convnets to efficiently learn increasingly complex and abstract visual con-
cepts (because the visual world is fundamentally spatially hierarchical).

Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height
and width) as well as a depth axis (also called the channels axis). For an RGB image, the
dimension of the depth axis is 3, because the image has three color channels: red,
green, and blue. For a black-and-white picture, like the MNIST digits, the depth is 1
(levels of gray). The convolution operation extracts patches from its input feature
map and applies the same transformation to all of these patches, producing an output
feature map. This output feature map is still a 3D tensor: it has a width and a height. Its
depth can be arbitrary, because the output depth is a parameter of the layer, and the

“cat”

Figure 5.2 The visual world forms a spatial hierarchy of visual 
modules: hyperlocal edges combine into local objects such as eyes 
or ears, which combine into high-level concepts such as “cat.”

Licensed to Victor Gonzalez Castro <victor.gonzalez@unileon.es>

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/30/18

Representation Learning in Deep CNNs

Mid level features

Eyes, ears, nose

Low level features

Edges, dark spots

High level features

Facial structure
Conv Layer 1 Conv Layer 2 Conv Layer 3

[6]

cat
learned 

high-level 
features

learned 
mid-level 
features

learned 
low-level 
features

learned 
classifier

Spatial filter hierarchy: successive 

convolution filters look at increasingly 
larger windows
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Resources

CNN Explainer. Learn Convolutional Neural Network (CNN) in your browser!
 https://poloclub.github.io/cnn-explainer/
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Issues with CNNs
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Data augmentation
Overfitting is caused by having too few samples to learn from.
Data augmentation generates more training data from existing training 
samples.

140 CHAPTER 5 Deep learning for computer vision

x = image.img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0
for batch in datagen.flow(x, batch_size=1):

plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:

break

plt.show()

If you train a new network using this data-augmentation configuration, the network
will never see the same input twice. But the inputs it sees are still heavily intercor-
related, because they come from a small number of original images—you can’t pro-
duce new information, you can only remix existing information. As such, this may not
be enough to completely get rid of overfitting. To further fight overfitting, you’ll also
add a Dropout layer to your model, right before the densely connected classifier.

Converts it to a Numpy array with shape (150, 150, 3)

Reshapes it to (1, 150, 150, 3)

Generates batches of 
randomly transformed 
images. Loops indefinitely, 
so you need to break the 
loop at some point!

Figure 5.11 Generation of cat pictures via random data augmentation

Licensed to Victor Gonzalez Castro <victor.gonzalez@unileon.es>

Data is augmented via random 
transformations that yield 
believable-looking images. It helps 
expose the model to more aspects 
of the data and generalize better.
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Data augmentation: dropout
Still the inputs for the model would be heavily intercorrelated.
Solution: Add a dropout layer right before the fully connected layer.

Randomly sets to 0 a fraction of the inputs to the fully connected layer 
during training time, to prevent overfitting.
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Using pretrained CNNs
• Pretrained network: Saved network that was previously trained on a 

large dataset. 
• Pretrained networks publicly available (e.g. in the module 

keras.applications). 
• Examples:

• Xception.
• VGG19
• VGG19
• ResNet50
• InceptionV3
• …
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Using pretrained CNNs: Feature extraction (I)
• Consists of using a pretrained network to extract features from new 

images using its convolutional base. 
• These features are then run through a new classifier, which is trained 

from scratch.

144 CHAPTER 5 Deep learning for computer vision

previously trained network, running the new data through it, and training a new clas-
sifier on top of the output (see figure 5.14).

Why only reuse the convolutional base? Could you reuse the densely connected classi-
fier as well? In general, doing so should be avoided. The reason is that the representa-
tions learned by the convolutional base are likely to be more generic and therefore
more reusable: the feature maps of a convnet are presence maps of generic concepts
over a picture, which is likely to be useful regardless of the computer-vision problem at
hand. But the representations learned by the classifier will necessarily be specific to the
set of classes on which the model was trained—they will only contain information about
the presence probability of this or that class in the entire picture. Additionally, repre-
sentations found in densely connected layers no longer contain any information about
where objects are located in the input image: these layers get rid of the notion of space,
whereas the object location is still described by convolutional feature maps. For prob-
lems where object location matters, densely connected features are largely useless.

 Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the
model. Layers that come earlier in the model extract local, highly generic feature
maps (such as visual edges, colors, and textures), whereas layers that are higher up
extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset
differs a lot from the dataset on which the original model was trained, you may be bet-
ter off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

New classifier
(randomly initialized)

Trained
convolutional

base
(frozen)

Figure 5.14 Swapping classifiers while keeping the same convolutional base

Licensed to Victor Gonzalez Castro <victor.gonzalez@unileon.es>

Feature set (2D 
tensor)
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Using pretrained CNNs: Feature extraction (II)
Alternative: 
• Add fully connected layers on top of the convolutional base.
• Freeze the convolutional base (i.e. prevent its weights to be changed).
• Train the model with the frozen convolutional base using data 

augmentation.

144 CHAPTER 5 Deep learning for computer vision

previously trained network, running the new data through it, and training a new clas-
sifier on top of the output (see figure 5.14).

Why only reuse the convolutional base? Could you reuse the densely connected classi-
fier as well? In general, doing so should be avoided. The reason is that the representa-
tions learned by the convolutional base are likely to be more generic and therefore
more reusable: the feature maps of a convnet are presence maps of generic concepts
over a picture, which is likely to be useful regardless of the computer-vision problem at
hand. But the representations learned by the classifier will necessarily be specific to the
set of classes on which the model was trained—they will only contain information about
the presence probability of this or that class in the entire picture. Additionally, repre-
sentations found in densely connected layers no longer contain any information about
where objects are located in the input image: these layers get rid of the notion of space,
whereas the object location is still described by convolutional feature maps. For prob-
lems where object location matters, densely connected features are largely useless.

 Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the
model. Layers that come earlier in the model extract local, highly generic feature
maps (such as visual edges, colors, and textures), whereas layers that are higher up
extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset
differs a lot from the dataset on which the original model was trained, you may be bet-
ter off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

New classifier
(randomly initialized)

Trained
convolutional

base
(frozen)

Figure 5.14 Swapping classifiers while keeping the same convolutional base

Licensed to Victor Gonzalez Castro <victor.gonzalez@unileon.es>

New fully connected 
Network

Prediction
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Using pretrained CNNs: fine tuning
• Consists on freezing the convolutional base except a few 

layers on top of it, and jointly training this non-frozen 
part and the fully connected layers added on top of it.

• Only the weights on the top layers of the convolutional 
base will get adapted (fine-tuned) to this problem).

153Using a pretrained convnet

Dense

Dense

Flatten

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Conv block 1: 
frozen

Conv block 2: 
frozen

Conv block 3: 
frozen

Conv block 4: 
frozen

We fine-tune
Conv block 5.

We fine-tune
our own fully 
connected 
classifier.

Figure 5.19 Fine-tuning the last 
convolutional block of the VGG16 network

Licensed to Victor Gonzalez Castro <victor.gonzalez@unileon.es>
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Some applications
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Beyond classification

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/30/18

Beyond Classification

Object Detection

CAT, DOG, DUCK

Semantic Segmentation

CAT

Image Captioning

The cat is in the grass.

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/30/18

Beyond Classification

Semantic Segmentation Classification + Localization Object Detection Instance Segmentation

CAT CAT CAT, DOG, DUCK CAT, DOG, DUCK
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Data, data, data!

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Data, Data, Data

MNIST: handwritten digits

places: natural scenes
ImageNet:  

22K categories. 14M images.
CIFAR-10

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship 

Truck
ImageNet

22K categories, 14M images

CIFAR-10 and CIFAR-100
10 or 100 categories, 60K images

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Data, Data, Data

MNIST: handwritten digits

places: natural scenes
ImageNet:  

22K categories. 14M images.
CIFAR-10

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship 

Truck

MNIST (Handwritten digits)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Data, Data, Data

MNIST: handwritten digits

places: natural scenes
ImageNet:  

22K categories. 14M images.
CIFAR-10

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship 

Truck
Places (Natural Scenes)

http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://places.csail.mit.edu/
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Face detection
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Self driving cars

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Driving Scene Segmentation

[10]Fix reference
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Healthcare
FOCUS | LETTERSNATURE MEDICINE

unaffected from affected individuals or distinguishing one specific 
syndrome from several others. We performed two binary experi-
ments of the latter type.

The model was trained using 614 Cornelia de Lange syndrome 
(CdLS) images as positive cohort, and 1079 other images as nega-
tive cohort. The test sets contained 23 images of CdLS and nine of 
non-CdLS patients4 (Supplementary Table 3). DeepGestalt achieved 
an accuracy of 96.88% (95% CI, 90.62–100%), sensitivity of 95.67% 
(95% CI, 87–100%) and specificity of 100% (95% CI, 100–100%) 
(for all binary experiments, accuracy is top-1 accuracy). We com-
pared this result with previous studies on the same test set (Table 1). 
Basel-Vanagaite et al.4 reported an accuracy of 87% and compared 
their method’s performance with that of Rohatgi et al.18, where the 

same images were assessed by 65 experts, achieving 75% accuracy. 
We measured statistical significance using the population propor-
tions test and calculated P values of 0.01 and 0.22 for the results 
of DeepGestalt and Basel-Vanagaite et al.4, respectively, versus the 
baseline of Rohatgi et al.18.

For a binary experiment on distinguishing patients with 
Angelman syndrome from other syndromes, the model was 
trained on 766 Angelman syndrome images as positive cohort 
and 2,669 images as negative cohort. In a survey by Bird et al.19, 20 
dysmorphologists examined 25 patient images for Angelman syn-
drome. The test set included 10 patients with Angelman syndrome 
and 15 with other syndromes (Supplementary Table 4). Bird et al.19  
reported an accuracy of 71% (range, 56− 92%), sensitivity of 
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Fig. 1 | DeepGestalt: high-level flow and network architecture. a, A new input image is first preprocessed to achieve face detection, landmarks detection 
and alignment. After preprocessing, the input image is cropped into facial regions. Each region is fed into a DCNN to obtain a softmax vector indicating its 
correspondence to each syndrome in the model. The output vectors of all regional DCNNs are then aggregated and sorted to obtain the final ranked list of 
genetic syndromes. The histogram on the right-hand side represents DeepGestalt’s output syndromes, sorted by the aggregated similarity score. b, The 
DCNN architecture of DeepGestalt. A snapshot of an image passing through the network. The network consists of ten convolutional layers, and all but 
the last are followed by batch normalization and a rectified linear unit (ReLU). After each pair of convolutional (CONV) layers, a pooling layer is applied 
(maximum pooling after the first four pairs and average pooling after the fifth pair). This is then followed by a fully connected layer with dropout (0.5) and 
a softmax layer. A sample feature map is shown after each pooling layer. It is interesting to compare the low-level features of the first layers with respect 
to the high-level features of the final layers; the latter identify more complex features in the input image, and distinctive facial traits tend to emerge while 
identity-related features disappear. The photograph is published with parental consent.
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Industry 4.0

Figure from https://www.sick.com/at/en/deep-learning-as-motor-for-industry-40/w/blog-deep-learning/
https://insidernavigation.com/ar-indoor-navigation/
https://tanhungha.com.vn/ung-dung-cua-camera-vision-cho-vision-guided-robotics-n290.html
https://www.anybotics.com/computer-vision-and-synthetic-data-are-key-to-training-autonomous-robots/

Inspection Indoor augmented reality

Robotics
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Hands on: Automatic classification of inserts 
using image classification with CNN
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Hands on: Automatic classification of inserts using image classification with CNN
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Hands on: Automatic classification of inserts using image classification with CNN

Cutting using plasma or oxy-fuel

Milling the edge of the plate in order to
leave the weld profiled

Prediction of wear of cutting tools operating in a single pass across thick plates

Cutting machine

Wear monitoring of cutting tools
operating in a single pass across thick plates

Very aggressive

After every pass

Of all inserts
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Hands on: Automatic classification of inserts using image classification with CNN

Breakage evaluation

Wear evaluation: Shape description
Texture description

Unbroken Broken
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