Graphene based nanoelectronic - a practical approach

or How to fabricate a G-FET

Laboratory of Organic Matter Physics University of Nova Gorica

July 7, 2023

Graphene

thermofisher.com
B. Terrés, L. Chizhova, F. Libisch, et al. Size quantization of Dirac fermions in graphene constrictions Nat Com. (2016)

Graphene structure

The atomic structure of graphite

- in-plane covalent bond: bond length= 0.142nm bond strength ≈ 3.6eV
- intra-plane van der Waals bond: bond length= 0.335nm bond strength= 0.04eV

Fabrication Techniques for Graphene

Whitener, Sheehan (2014): "Graphene synthesis.", Diamond and related materials 46, 25. Novoselov, Castro Neto (2012): "Two-dimensional crystals-based heterostructures: materials with tailored properties." Physica Scripta, 014006. 4 0 1 4 6 1 4 5 1 4 5 1

Fabrication Techniques for Graphene

Micromechanical cleavage (Scotch Tape Method)

Epitaxial growth on SiC

Whitener, Sheehan (2014): "Graphene synthesis.", Diamond and related materials 46, 25.

Novoselov, Castro Neto (2012): "Two-dimensional crystals-based heterostructures: materials with tailored properties." Physica Scripta, 014006.

Fabrication Techniques for Graphene

Epitaxial growth on SiC

Chemical Vapor Deposition (CVD)

Whitener, Sheehan (2014): "Graphene synthesis.", Diamond and related materials 46, 25.

Novoselov, Castro Neto (2012): "Two-dimensional crystals-based heterostructures: materials with tailored properties." Physica Scripta, 014006.

Natural graphite:

2spi.com/category/hopg-spi-supplies/

Highly oriented pyrolytic graphite (HOPG) :

Hexagonal Boron Nitride hBN:

- hexagonal lattice structure (similar to Gr): alternating boron (B) and nitrogen (N) atoms;
- weak interlayer bonding (but stronger compared to Gr);
- brittle nature: prone to fracture during exfolaition.

Molibdenum Disulfide *MoS*₂:

- hexagonal layered structure (similar to Gr);
- semiconductor: $\Delta E_g = 1.8 \text{ eV}$;
- weak interlayer bonding (between Gr and hBN);

hggraphene.com/h-BN.php

Other two-dimensional materials

The substrate

semiconductor

https://www.mindat.org/min-3659.html

By Parent Géry via Wikimedia Commons

SiO₂/Si

surface oxidation

https://www.spisemicon.com

285 nm SiO₂

2000

The micromechanical cleavage

The caracterization

OPTICAL MICROSCOPY

The caracterization

ATOMIC FORCE MICROSCOPY

The preparation of the electrodes

LITHOGRAPHY & EVAPORATION

The graphene-based field-effect transistor

