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The qubit
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Q A scalable physical system with well characterized qubits
Q The ability to initialize the state of the qubits to a simple fiducial state
Q Long relevant decoherence times
@ A "universal” set of quantum gates
Q A qubit-specific measurement capability
See: D. P. DiVincenzo, Fortschritte der Physik. 48, 771 (2000)
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Quantum dots as qubits

“Quantum computation with quantum dots”

© "ow'

P 3
9 })"'\I}:
"high')

Loss and DiVincenzo, Phys. Rev. A 57, 120 (1998)
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Elzerman et al., 2004
Mills et al., 2019
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Physical constraints

o Initialization:
: By > kgT/gup
o Relaxation
(phonons):
o Dephasing (nuclei):

o The rotations are implemented by
applying a transverse and oscillating
magnetic field
B (t) = Ay cos(2mvpt) v > 1/T,

o Relevant physical parameters:
vr, = gupBo/h (Larmor frequency)
vr = gupAp/h (Rabi frequency)
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Initial factorized state:

[w(t = 0)) = Jo1) =

1

ﬂ(IT> +15))

Time evolution induced by a finite singlet-triplet splitting J:
1

[W(t > 0)) = e /M |w(0))

Factorized of entangled final states:
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o Exploiting a built-in property of the material in order to have an effective,
momentum-dependent B-field or a tunable, inhomogeneous ¢ tensor

o Inducing a synthetic SOI through a magnetic-field gradient

P

400 nm
Y P1

Co micromagnet

gates -
siqw,
> 2DEG
Depletion

gate

Vandersypen Lab (QuTech)

o Passing from the conduction to the valence band (from electrons to holes)
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Quantum dots as qubits

The material matters: group IV SCs are better than IlI-V

s 2
s 2

Spin-up fraction, f,

. 5 v Microwave pulse length, T, (us)

0 a0 60 800 1000

Burst time (ns) Veldhorst et al., 2014
isotopically purified Si, T5 = 120 us

Koppens et al., 2006 ( : be)

(GaAs, Ty = 27ns)
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Spin readout in semiconductor QDs:

Q Correlating spin and charge state
through spin-dependent electron
tunneling

O Detecting the charge state through

the capacitive coupling to a
QPC/SET

a Energy-selective readout

ES ,I.} ES

—.— ——
GS [ Mes GS
—0= —-—

b Tunnel-rate-selective readout
Tes»Tgg
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e —t—

GS GS
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Elzerman et al., Nature 430, 431 (2004)
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Hole-spin qubits in fabricated pMOS

Si p-MOSFET double quantum dot structure
in the 22nm FDSO/ process
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Fabricated MOSFET —
Down-scaled device —
TCAD simulation —

Configuration
k.p method '9 . !
Interaction
l . Coulomb l
Single-particle states integrals Few-particle states
¢j(ri) 2 ‘I/j(rl,..,rN)
‘/ _ e
Single-particle energies €|7‘i =T I Few-particle energies
€j E;

— Effective qubit Hamiltonian, compact models
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Quantum dots as qubits

The device & the quantum dot formation

GATE STACK
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Figure: Down-scaled version of a
fabricated pMOSFET (Global Foundries
22nm FDSOI process)

Figure: Simulated confining potential
along the symmetry axes of the Si channel
for T = 2K
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GATE STACK

typ= L5 nm

Doping (o) s o ()
00 5o 0

S/D p' DOPING PROFILE
L

The GS doublet is characterized by:
o Localization in the Si channel
o Predominant hh character
o Quasi mirror symmetries
o Energy gap A/kp =76 — 80K

Ve [V | p(Rsp) (%] p(Rus) [ p(RS,) [B] p(Ro.) (%]
-0.8 0.91 0.77 0.01 0.19
-0.6 1.42 1.23 0.01 0.18
Vo M [ pl [4] Pl [7] i [%]
-0.8 86.44 11.57 1.99
-0.6 83.14 14.56 2.30
Down-scaled version of a Vo M | (o,2) (0-2) ) (o:)
. . -0.8 0.9655 0.9670 0.8548 0.8870
fabricated pMOSFET (Global Foundries o6 | 09ee0 0.9602 08804 0.9280

22nm FDSOI process)
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Rabi frequencies for rotations around
the X and Z axes of the Bloch sphere:

7 = 2 1L AU )
7 = o LA ISUILA) = (1, 416011, 4)]

and for a sequence of the two:

xz (1 1N\T'_ fifE
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Dependence on the orientation of
B = B(sin § cos ¢, sin 0 sin ¢, cos 6)
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Photoluminescence
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o Qubit encoding in the hyperfine levels of the ions

o Initialization of the nuclear and vibrational states by optical pumping
o Quantum gates by laser pulses, qubit-qubit coupling by vibrational modes
o Optical qubit measurement (fluorescence)
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o Superconducting (transmon) qubits
o General purpose quantum computing, demonstrated the quantum supremacy
o A 53-qubits quantum processor (Sycamore)

See: https://quantumai.google/
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“Our Sycamore processor takes about 200 seconds to sample one instance of a
quantum circuit a million times—our benchmarks currently indicate that the
equivalent task for a state-of-the-art classical supercomputer would take
approximately 10,000 years.”

F. Arute et al., Nature 574, 505 (2019)
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o Superconducting qubits
o General purpose quantum computing
o IBM Q System One (20 qubits), IBM Q System (53), Eagle (127 qubits)

See: https://www.ibm.com/quantum-computing/
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o The implementation of useful quantum algorithms requires ~ 103 logical
qubits, which might correspond to ~ 10° physical qubits, considering the
overhead due to error protection and correction.

o However, the limit of n = 50 qubits has now been hit, where brute force
simulations of the quantum device become unfeasible.

o We have entered the NISQ era, characterized by values of n between 50 and
a few hundreds, a number of gates of the order of 102, imperfect control on
the qubits, and no error correction.

J. Preskill, arXiv:1801.00862v3 (2018)
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o A different approach to quantum computing
o Applications in combinatorial optimization (NP-hard) problems

o D-Wave One (128 qubits), D-Wave Two (512), D-Wave 2X (1024), D-Wave
2000Q (2048), Pegasus (5640)

See: https://www.dwavesys.com/
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o Quantum computers hold the promise of solving problems that are otherwise
intractable. However, in order to fully maintain the promise, orders of
magnitude improvements are needed in the circuit volume.

o Current quantum quantum computers are complex enough to challenge
“classical computers” on specific tasks.

o Near term quantum computers can find interesting applications, for example
in optimization problems or within hybrid (quantum-classical) approaches.
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Entanglement is a property of the quantum state of a composite system
(unlike interaction, which is a property of the system). It results from the
application of the superposition principle to composite systems.

The state of a bipartite (AB) system is entangled if it cannot be written in a
factorized form: |U) # |1)4) ® |¢B).

For example: |01) and |00) + |10) = (|0) + |1)) ® |0) are factorized states,
|00) + |11) is an entangled state.

The definition can be generalized to mixed states and to multipartite systems.

If A and B are entangled, the maximum amount of knowledge on the state of
AB can correspond to a complete lack of knowledge on the state of A and B,
taken individually. On the other hand, the correlations between A and B can

violate “classical” bounds.

If A and B are entangled, a measurement performed on A affects the state of
B, and the effect propagates faster than light (action at a distance).
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