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Overview

• Machine Learning
• Concept
• Application fields
• Supervised, Unsupervised & Reinforcement learning

• Approaching a problem of learning from examples
• Building Machine Learning Models
• Supervised Learning models

• K-NN
• Naïve Bayes
• Neural Networks

• Evaluating classifier performance
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MACHINE LEARNING:
CONCEPT                         

and                             
APPLICATION FIELDS



Artificial Intelligence
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Artificial Intelligence
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What is Intelligence?

Intelligence

...the ability to reason, plan, solve problems, think
abstractly, comprehend complex ideas, learn quickly
and learn from experience.
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Artificial Intelligence

Artificial
Intelligence

(AI)

AI is the ability of a machine or computer system to 
emulate aspects of human intelligence:

Reasoning 

Learning 

Intelligent behaviour and thought

Capable of analyzing the environment and performing action
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Machine Learning
Artificial Intelligence: The general picture

• The effort to automate intellectual tasks normally performed by 
humans.

• AI is a general field that includes Machine Learning and Deep 
Learning, but also other approaches that do not involve any 
learning at all



Machine Learning
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Machine Learning
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Machine learning, a branch of artificial intelligence, 
concerns the construction and study of systems that can 
learn from data.

Source: GumGum



Machine Learning
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Machine Learning (Aprendizaje Automático) a branch of artificial intelligence,
concerns the construction and study of systems that can learn from data.

Learning from experience Learning from experience data

Data

Machine Learning
Techniques

To predict future events
Infer the causes of events



Machine Learning: Ingredients
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• Technology allows us to have, store and process large
amounts of data (information society)

• High commercial and industrial interest in the
development of techniques for extracting knowledge from
data, for finding patterns. Particularly in problems:

• where algorithms do not exist

• not well defined

• informally proposed

• Great progress in the development of algorithms and
models by researchers. Development of tools:

• Classification (Assignment to a predefined category)

• Regression (Estimation of a numerical value)



Typical tasks
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• Why data-driven learning (machine learning)?

• Ability to mimic humans and replace them in monotonous tasks that
require intelligence

Handwriting recognition

• Develop systems that can automatically adapt to individual users

Personalised news feeds, e-mail filters

• Extracting knowledge from large databases

Shopping basket analysis



Typical applications
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• Mundane - Ordinary Tasks (humans learn ordinary tasks since their birth but 
we can't describe how we do them).
Character recognition

• Expert Tasks
Quality control in manufacturing

• Problems where there are no human experts
Importance of certain genes in disease risk

• Situations where each user has his or her own target function
Newspapers with personalised news, personalised  advertising

• Problems where the volume of data makes it impossible for humans to 
perform any analysis
Techniques capable of finding relationships within large DBs



Machine Learning Today
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We see it practically every day, across every industry. From healthcare to 
agriculture, entertainment to transportation, AI applications  are shaping our 
present and redefining our future.



AI is the new Electricity [Andrew Ng]
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Dr. Andrew Ng:

• Globally recognized leader in AI

• He is Founder of DeepLearning.AI, Founder & CEO of Landing AI,
General Partner at AI Fund, Chairman and Co-Founder of Coursera

• Professor at Stanford University

• Pioneer in machine learning and online education

https://www.deeplearning.ai/
https://landing.ai/
https://aifund.ai/
https://www.coursera.org/


Machine Learning: Big tasks
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MACHINE LEARNING

SUPERVISED LEARNING UNSUPERVISED LEARNING

CLASSIFICATION REGRESSION CLUSTERING ASSOCIATION
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Training set: 

WITH labels

Supervised learning
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Training set: WITHOUT labels

Unsupervised learning



Supervised learning
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We have a set of labelled data (examples + labels )

Classification

Regression



Supervised learning problems
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Temperature/Weather Forecast

Regression or Classification?



Supervised learning problems
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Regression or Classification?

Input (x) Output 

Home features (#bedrooms, size,…) Price

Advertisement, user info Click on ad? (Yes/No)

Image Object (1,2,…,1000)

Age, sex, cholesterol, #Cigarettes, blood
sugar, family history

Heart disease (True/False)

Employee’s atributes(seniority, income, 
department, distance from home,..)

How long until an employee
looks for another job

Age, level of education,area, job title,.. Income



Unsupervised learning
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We have an unlabelled dataset (examples)
Also known as “learning without a teacher”



Unsupervised learning problems
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Goldberger et al.

Cluster similar items, for example, images



Unsupervised learning problems
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Cluster similar items, for example, customers



Types of machine learning
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SUPERVISED LEARNING UNSUPERVISED LEARNING

CLASSIFICATION REGRESSION
Data

No labels

Data with labels (finite set of 
symbolic classes)

Data with labels (numerical 
label)



APPROACHING A 
PROBLEM OF LEARNING 

FROM EXAMPLES



Hands-on an illustrative problem



What do we need ?

• A system that verifies that the person is who he/she claims 
to be to enter the security room.

¿user?



Handwriting

?¿

Identity verification with biometric 
features



Classification

• It verifies that the person is who he/she claims to be.
• It is based on a pattern recognition system.

=
?

=
?



Basic steps to create the system

• Dataset

• Training the model

• Model test

• Model evaluation



Basic steps to create the system

• Dataset

• Training the model

• Model test

• Model evaluation



User X

Handwriting “y”



Other users

Handwriting “y”



Available dataset

Other users
User X



Basic steps to create the system

• Dataset

• Training the model

• Model test

• Model evaluation



What can YOU do?



Model training

Other users
User X



Model training

Other users
User X



Available dataset

Other users
User X



Basic steps to create the system

• Dataset

• Training the model

• Model test

• Model evaluation



User X



User X
False rejection



Basic steps to create the system

• Dataset

• Training the model

• Model test

• Model evaluation



TEST

¿                      or ?



TEST

¿                      or ?



TEST

¿                      or ?



Evaluation metrics

Error rate?
False 

Aceptance
Rate?

False Rejection
Rate?



SUPERVISED LEARNING MODELS



Supervised Learning Models

K-NN Naïve
Bayes

SVM

Decision 
Trees

Random
Forest

Neural 
Networks



SUPERVISED LEARNING:
K-NEAREST NEIGHBOURS (K-NN)



K-nearest Neighbours (kNN)

Class 0 Class 1

kNN Assumes that the 
samples from the same 
class are close in the feature 
space

Use a set of training data to 
adjust the model



Class 0 Class 1

Training data Feature space

K-nearest Neighbours (kNN)



Class 0 Class 1
Test sample

???

Training data Feature space

K-nearest Neighbours (kNN)



Class 0 Class 1
Test sample

???

Training data Feature space

K nearest

K-nearest Neighbours (kNN)



Class 0 Class 1
Test sample

Assigned to 
Class 1

Training data Feature space

K-nearest Neighbours (kNN)



Euclidean distance:

Manhattan distance:

Chebyshev distance:

Cosine distance:
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SUPERVISED LEARNING:
NAIVE BAYES



Naive Bayes
Classifier



Probabilistic Classification

• Establishing a probabilistic model for classification

),,,( 21 nxxx ⋅⋅⋅=x

Probabilistic Classifier

1x 2x nx
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Probability Basics

Prior, conditional and joint probability for random variables
– Prior probability: 

– Conditional probability: 

– Joint probability: 
– Relationship:
– Independence: 

Bayesian Rule
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Probabilistic Classification

• Maximum A Posterior (MAP) classification rule
– For an input x, find the largest one from L probabilities output 

by a probabilistic classifier

– Assign x to label c*  if                     is the largest.

• Classification with the MAP rule
– Apply Bayesian rule to get posterior probabilities

– Then apply the MAP rule to assign a label

    ..., , ).()( 1 xx |cP|cP L

Li

cPc|P
P

cPc|P|cP ii
ii

i

   for                                    

 

,,2,1

)()(
)(

)()()(

⋅⋅⋅=

∝= x
x

xx

   )( * x|cP

Common factor for 
all L probabilities



Naive Bayes

Bayes classification

Difficulty: learning the joint probability                                             

Naïve Bayes classification
– Assume all input features are class conditionally independent!

– Apply the MAP classification rule: assign                                           to c* if
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Naive Bayes Algorithm (for discrete input attributes)

Learning Phase: Given a training set S, with L classes and n features

Output: conditional probability tables; for                       elements

Test Phase: Given an unknown instance                    , 

Look up tables to assign the label c* to X’ if 

;  in examples  with)|( estimate)|(ˆ        
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Example NB: Play Tennis



Example NB : Play Tennis

Learning Phase: Given a training set S, with L classes and n features

Output: conditional probability tables; for                       elements

;  in examples  with)|( estimate)|(ˆ        

),1 ;,,1( attribute each of   valueattributeevery     For 
; in examples  with)( estimate)(ˆ    
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Example: Play Tennis

Learning Phase: Given a training set S, with L classes and n features

Output: conditional probability tables; for                       elements

;  in examples  with)|( estimate)|(ˆ        

),1 ;,,1( attribute each of   valueattributeevery     For 
; in examples  with)( estimate)(ˆ    
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P(Play=Yes) = 9/14 P(Play=No) = 5/14



Example: Play Tennis

Learning Phase: Given a training set S, with L classes and n features

Output: conditional probability tables; for                       elements

;  in examples  with)|( estimate)|(ˆ        

),1 ;,,1( attribute each of   valueattributeevery     For 
; in examples  with)( estimate)(ˆ    

 of lue target vaeachFor 1

S

S
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Outlook Play=Yes Play=No
Sunny

Overcast

Rain

Outlook Play=Yes Play=No
Sunny 2/9 3/5

Overcast 4/9 0/5
Rain 3/9 2/5



Example: Play Tennis

Learning Phase:

Outlook Play=Yes Play=No
Sunny 2/9 3/5

Overcast 4/9 0/5
Rain 3/9 2/5

Temperature Play=Yes Play=No
Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14



Example: Play Tennis

Test Phase: Given a new instance, predict its label

– x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables achieved in the learning phrase
P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool|Play==No) = 1/5
P(Huminity=High|Play=No) = 4/5
P(Wind=Strong|Play=No) = 3/5
P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14

P(Yes|x’) ≈ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053

P(No|x’) ≈ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.

– Decision making with the MAP rule



Supervised Learning. Naïve Bayes.

Advantages
• It’s relatively simple to understand and build
• It’s easily trained, even with a small dataset
• It’s fast!
• It’s not sensitive to irrelevant features
• Test is straightforward; just looking up tables 

Disadvantages
• It assumes every feature is independent, 

which isn’t always the case

Pros and cons of Naive Bayes



SUPERVISED LEARNING:
NEURAL NETWORKS



Inspired by the biological processes: Nervous system

Artificial Neural Networks

•Simplified mathematical models

•Try to mimic neurons in a very basic setting

•Without claiming to faithfully reflect the 
real behaviour of the nervous system

•Capable of handling uncertainty

•Robust Solutions

•Not an algorithm

•Non- linear models



S. Ramón y Cajal  Neuron discovery

Biological neuron

Artificial  Neuron vs.                  Biological Neuron

1906 Nobel Prize in Medicine
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Perceptron (by Rosenblatt)
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MultiLayer Perceptron(MLP)
Architecture

Input   
layer

Output 
layer

Hidden
layers



… Training Neural Networks
Cost function

w1 w0

• The key idea is to use gradient descent to search the hypothesis space of
possible weights to find the network weights that best fit the training
examples.



… Training Neural Network
Cost function

Miminum error

Initial random weights



Building Machine Learning 
Models
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Building Machine Learning Models

Pipeline

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



Clearly define the problem 
statement and objective of 
the machine learning 
model.

Identify the type of 
machine learning task 
(classification, regression, 
clustering, etc.).

I-Problem Definition and Data Collection

Collect and preprocess the 
relevant data required for 
training and evaluation.

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



II-Data Exploration and Preparation

● Perform exploratory data analysis (EDA) to gain insights into 

the dataset.

● Handle missing values, outliers, and inconsistencies in the 

data.

● Feature selection, feature extraction.

● Split the data into training, validation, and test sets.

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



III-Model Selection

Choose an appropriate 

model based on the 

problem requirements and 

dataset characteristics.

Understand different 

types of machine 

learning algorithms 

(decision trees, neural 

networks, etc.).

Consider factors such as 

model complexity, 

interpretability, and 

scalability.

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



● Prepare the data for model training (normalization, encoding categorical variables, 

etc.).

● Optimize the model parameters using a suitable optimization algorithm (e.g., gradient 

descent).

● Evaluate the model's performance on the validation set to monitor its progress.

IV-Model training

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



Measure the model's 
performance using 
appropriate evaluation 
metrics (accuracy, precision, 
recall, etc.).

Analyze the model's 
strengths, weaknesses, and 
potential sources of error.

V-Model Fine-Tuning

Adjust hyperparameters (e.g., 
learning rate, regularization) to 
improve model performance.

Use techniques like cross-
validation or grid search to find 
the optimal hyperparameter 
values.

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



● Assess the final model's performance on the test set.

VI-Model testing

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment

Source: Sebastian Raschka

Test data



● Implement the model in a production environment.

● Monitor the model's performance in production and iterate on 
improvements as needed.

VII-Model deployment

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



The development of Machine Learning-based applications is a highly empirical 

process.

Machine Learning — An iterative process

I-Problem 
Definition 
and Data 
Collection

II-Data 
Preparation

III-Model 
Selection

IV-Model 
training

V- Model 
Fine-Tuning

VI - Model 
Testing

VII 
Deployment



The quality of the results strongly depends on the quality of the training data.

Remarks: Data quality

GIGO

(Garbage In, Garbage Out)



● Objective function: It is the true function f that we aim to learn.

Remarks:  Variable (Feature, Attribute) Types

Variable 
types

Quantitative

Discrete

Continuous

Qualitative 
(Categorial)

Nominal

Binary

Ordinal

# students in the class, # children
( 1, 23, 560, …)

Temperature, weight, length of the leaves
( 21.5, 56.7, …)

Eye colour, cities,
( Brown, Blue, Lisbon, Paris,…)

Ranking in a race, customer satisfaction
( Third, Second, Low, Medium, High, …)

Two possible values
( Yes/ No, True/False, 1/0 …)



MODEL EVALUATION



In that case, we would be rewarding 
models that MEMORIZE TRAINING 
DATA

What if I use the training 
set to assess the quality 

of the model?

PROBLEM!!!! We want our classifier to 
generalize well for new (unknown) cases.

SOLUTION Evaluate the models on a 
dataset different from the training dataset.

How can we evaluate  model?



How can we get an unbiased 
estimate of the accuracy of a 

learned model?



Evaluation techniques

testx ˆ( )test testhθ =x y

Learning 
method

hθ

trainX

trainY

testY

X

Y

Evaluation

LEARNED 
MODEL

Splitting the dataset into train and test set

Train-Test split



Evaluation techniques
Train-Test split

The available data set D is divided into two disjoint subsets,
• the training set Xtrain (for learning a model) (70%)
• the test set Xtest (for testing the model) (30%)

This method is mainly used when the data set X is large.

IMPORTANT!!!!
The training set should not be used
in testing and the test set should
not be used in learning.
Unseen test set provides a
unbiased estimate of accuracy.
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

It is used to describe the performance of a classification 
model (or "classifier") on a set of test data for which the true 
values are known. 



TEST

¿                      o                       ?
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

False negative: When the model says you are not the user but you actually are.
False positive: When the model says you are the user but you are not.
True negative: When the model says you are not the user  and you are not.
True positive: When the model says you are the user and you are.

When someone performs a test to check if s/he is an authorized user:

FN, FP, TN, TP?



101

Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

3

4

1

2
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

Accuracy is the number of correctly classified examples
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

Precision is the number of correctly classified positive examples 
divided by the total number of examples that are classified as 
positive. 

Recall is the number of correctly classified positive examples 
divided by the total number of actual positive examples in the test 
set. 
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

3

4

1

2

0,70

Accuracy is the number of correctly classified examples
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

Precision is the number of correctly classified positive examples 
divided by the total number of examples that are classified as 
positive. 

3

4

1

2

0,75
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

CONFUSION MATRIX

3

4

1

2

0,60

Recall is the number of correctly classified positive 
examples divided by the total number of actual positive 
examples in the test set. 
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Evaluation metrics
Confusion matrix

Introduction to Machine Learning

F-score

0,75

0,60

0,66



Overview

• Machine Learning
• Concept
• Application fields
• Supervised, Unsupervised & Reinforcement learning

• Approaching a problem of learning from examples
• Building Machine Learning Models
• Supervised Learning models

• K-NN
• Naïve Bayes
• Neural Networks

• Evaluating classifier performance

108Introduction to Machine Learning



Introduction to Machine 
Learning

Thank you!

Rocío Alaiz Rodríguez
rocio.alaiz@unileon.es

mailto:Rocio.alaiz@unileon.es
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