RECINNA

ADDITIVE MANUFACTURING AS A MEAN FOR SUPPORTING RAPID DEVELOPMENT OF INNOVATIVE PRODUCTS SOFÍA PELÁEZ

Manufacturing Process Engineering Area, Universidad de León (Spain)

Spelp@unileon.es

INDEX

- □ WHAT IS ADDITIVE MANUFACTURING?
- □ ADDITIVE MANUFACTURING METHODS
- FEATURES AND BENEFITS OF ADDITIVE
 MANUFACTURING
- LIMITS AND CHALLENGES OF ADDITIVE MANUFACTURING
- GENERAL ADDITIVE MANUFACTURING APPLICATIONS

WHAT IS **ADDITIVE MANUFACTURING**?

Also known as **3D printing**

RECINNA

The process of **joining** materials to produce parts or objects from 3D model data, typically layer by layer, as opposed to subtractive and forming manufacturing methods [1].

ADDITIVE VS SUBTRACTIVE MANUFACTURING

CINNA4.0

Page 4

[2] Comparing Additive Manufacturing Vs Subtractive Manufacturing: What Are the Differences, 2012, https://www.rapiddirect.com/blog/additive-vs-subtractive-manufacturing/,
 [3] Du, Wei & Bai, Qian & Zhang, Bi. (2016). A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts. Procedia Manufacturing. 5. 1018-1030. 10.1016/j.promfg.2016.08.067.

BASIC STEPS OF ANY ADDITIVE MANUFACTURING PROCESS

FINAL PART

STEP 5

Extraction

STEP 6 Post-processing & Surface finish

)

STEP 1: 3D MODEL GENERATION

2 3D SCAN + REVERSE ENGINEERING

STEP 3: SLICING

PARAMETERS DEPENDING THE METHOD OF MANUFACTURING

- ➢ LAYER HEIGHT
- ➢ INFILL
- ➢ WALL THICKNESS
- STRATEGY PATH
- > SUPPORTS
- > MATERIAL
- > SPEED
- ≻ ...

MECHANICAL PROPERTIES SURFACE FINISH (STAIRCASE EFFECT) TIME OF PRINTING MATERIAL CONSUMPTION

STEP 4: MANUFACTURING

MATERIAL EXTRUSION (MEX)

MATERIAL JETTING (MJT)

POWDER BED FUSION (PBF) SHEET LAMINATION (SHL)

STEP 5: EXTRACTION

RECINNA 4.0

STEP 6: POST-PROCESSING & SURFACE FINISH

THERMAL

CHEMICAL

SURFACE FINISH

CLASSIFICATION OF AM TECHNOLOGIES: THE 7 CATHEGORIES

CATEGORIES	TECHNOLOGIES	PRINTED "INK"	POWER SOURCE	STRENGTHS / DOWNSIDES
Material Extrusion	Fused Deposition Modeling (FDM)	Thermoplastics, Ceramic sturries, Metal pastes	Thermal Energy	 Inexpensive extrusion machine Multi-material printing Limited part resolution Poor surface finish
	Contour Crafting			
Powder Bed Fusion	Selective Laser Sintering (SLS)	Polyamides /Polymer	High-powered Laser Beam	 High Accuracy and Details Fully dense parts High specific strength & stiffness Powder handling & recycling Support and anchor structure Fully dense parts High specific strength and stiffness
	Direct Metal Laser Sintering (DMLS)	Atomized metal powder (17-4 PH stainless steel, cobalt chromium, titanium Ti6AJ- 4V), ceramic powder		
	Selective Laser Melting (SLM)			
	Electron Beam Melting (EBM)		Electron Beam	
Vat Photopolymerization	Stereolithography (SLA)	Photopolymer, Ceramics (alumina, zirconia, PZT)	Ultraviolet Laser	 High building speed Good part resolution Overcuring, scanned line shape High cost for supplies and material
Material Jetting	Polyjet / Inkjet Printing	Photopolymer, Wax	Thermal Energy / Photocuring	 Multi-material printing High surface finish Low-strength material
Binder Jetting	Indirect Inkjet Printing (Binder 3DP)	Polymer Powder (Plaster, Resin), Ceramic powder, Metal powder	Thermal Energy	 Full-color objects printing Require infiltration during post- processing Wide material selection High porosites on finished parts
Sheet Lamination	Laminated Object Manufacturing (LOM)	Plastic Film, Metallic Sheet, Ceramic Tape	Laser Beam	 High surface finish Low material, machine, process cost Decubing issues
Directed Energy Deposition	Laser Engineered Net Shaping (LENS) Electronic Beam Welding (EBW)	Molten metal powder	Laser Beam	 Repair of damaged / worn parts Functionally graded material printir Require post-processing machine

Material extrusion is an AM process where the material is **selectively deposited** through an extruder or an orifice.

Identification according to ISO/ASTM 52900:2021

MEX-CRB

MEX-TRB

Bounded by chemical reaction **Bounded by thermal** reaction

MOST KNOWN

90% market of

30% professional

market

ノ

MEX-TRB

FDM/FFF

Fused Deposition Modeling / Fused Filament Fabrication Continuos Fibre Fabrication Direct Ink Write

MEX-TRB

MEX-CRB

Bounded by Chemical Reaction

VAT PHOTOPOLIMERIZATION (VPP) ALSO KNOWN AS STEREOLITHOGRAPHY (SLA)

First AM process to be successfully commercialized. (Chuck Hull – 1980s)

Vat photopolymerization uses a **light source** to activate a **photopolymer that hardens** when hit by the right wavelength and intensity of light.

RECINNA 4.0

Identification according to ISO/ASTM 52900:2021	VPP-UVL ULTRAVIOLET LIGHT	VS VPP-UVM ULTRAVIOLET MASK	vs VPP-LED
Commercial names	SLA Stereolithography	DLP Digital Light Processing	LCD Liquid Cristal Display
Projection mode			
AC Page 22	CURACY O SPEED		

Photo Credits: HUBS; Formlabs; ELEGOO;

MAIN APPLICATIONS

- PRODUCT DESIGN AND ENGINEERING
- > MANUFACTURING
- > DENTISTRY
- EDUCATION
- ➢ HEALTHCARE
- > ENTERTAINMENT
- > JEWELLERY

VAT PHOTOPOLIMERIZATION WITH CERAMICS (VPP-UVL/C)

VAT PHOTOPOLIMERIZATION WITH CERAMICS (VPP-UVL/C)

PRINTING PROCESS

ADVANTAGES

High density sintered parts (guaranty of good mechanical properties)

High dimensional accuracy

Smooth surface finish

Binder Jetting consists in a liquid binding agent (binder) is <u>selectively deposited</u> to join powdered materials.

BINDER JETTING (BJT)

CLEANING PARTS

AREA

Video from SiDe Design

MATERIAL JETTING (MJT)

Material Jetting process consists in **droplets** of feedstock material are selectively deposited.

MANUFACTURING PRINCIPLE: https://share.vidyard.com/watch/tutFoLzyXgqbUU8itzpFKf

UV LIGHTS

MANUFACTURING PLATFORM

MATERIAL JETTING (MJT)

ADVANTAGES

Accuracy

Full-colour and multi-material parts

Support structures

Photo Credits: Stratasys; Additive 3D;

LIMITATIONS

Poor mechanical properties

Slow printing process

Material limitations

Powder Bed Fusion achieve 3D manufacturing by melting selectively a <u>powdered</u> <u>material</u> through a thermal energy source.

Selective Laser Melting (SLM)

- Fused with laser. Homogeneous metallic powder of the same metal

Direct Metal Laser Sintering (DMLS)

- Fused with laser. Metallic Alloys powder.

Selective Laser Sintering (SLS)

- Fused with laser.Non-metallic materials powder

Electro Beam Melting (EBM)

- Fused with Electro Beam. Metallic powder

Multi-Jet Fusion (MJF)

- Fused with fusing agent and infrared light.

Phenix ProX DMP 100

ノ

CINNA4.0

Direct Metal Laser Sintering (DMLS)

https://youtu.be/MtOvlzyoS4s

Printing with different path strategies

100 mm

Selective Laser Sintering (SLS)

How Does Selective Laser Sintering (SLS) 3D Printing Work? (youtube.com)

ノ

Electro Beam Melting (EBM)

"MJ + SLS"

SHEET LAMINATION (SHL) ALSO KNOWN AS LAMINATED OBJECT MANUFACTURING (LOM)

In this process, the material, in form of **sheets**, is **bonded** together to form an object. For that, each sheet is cut to shape with a **knife or laser**.

HOW TO BOND?

Identification according to ISO/ASTM 52900:2021

SHL-AJ

ADHESIVE JOINING

PAPER PLASTIC

ULTRASONIC CONSOLIDATION

This one need additional CNC

SHEET LAMINATION (SHL) ALSO KNOWN AS LAMINATED OBJECT MANUFACTURING (LOM)

DIRECT ENERGY DEPOSITION (DED)

Direct Energy Deposition is an AM process in which focused thermal energy is used to fuse materials by melting <u>as they are being deposited</u>.

2018 © Dassault Systèm

DIRECT ENERGY DEPOSITION (DED)

DIRECT ENERGY DEPOSITION (DED)

IMPOSSIBLE PARTS AND CUSTOMISED PARTS

LATTICE STRUCTURES

IMPOSSIBLE GEOMETRIES

CUSTOMISED PARTS

TOPOLOGICAL OPTIMISATION & LIGHTWEIGHTING

RAPID MANUFACTURING

COST SAVINGS

MUCH LESS WASTE THAN SUBTRACTIVE MANUFACTURING

ACCELERATION OF R&D PERFORMANCE

[5]

(a) Resultant pinhole (~0.5mm)

SURFACE FINISH AND ACCURACY **Staircase effect** (b) Surface roughness [4] 2h Wire DED Ra = 45-200+ un designed model fabricated object fabricated object (layer thickness 2h) (layer thickness h)

Photo Credits: Digital Alloys;

[4] Quan, Zhenzhen & Wu, Amanda & Keefe, Michael & Qin, Xiaohong & Yu, Jianyong & Suhr, Jonghwan & Byun, Joon-Hyung & Kim, Byung & Chou, Tsu-Wei. (2015). Additive manufacturing of multi-directional Page 47 preforms for composites: Opportunities and challenges. Materials Today. 255. 10.1016/j.mattod.2015.05.001.

[5] Sidambe, Alfred & Judson, D.S. & Colosimo, Samantha & Fox, Peter. (2019). Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. International Journal of Refractory Metals and Hard Materials. 84. 104998. 10.1016/j.ijrmhm.2019.104998.

MANUAL POST-PROCESSING

ACCURACY ?

Photo Credits: Getty Images; Impresiontresde

VPP-UVL/C

ANISOTROPY

3-D printing (Fused Depostion Modeling)

Page 50

[X] Nouri, Alireza & Rohani, Anahita & Li, Yuncang & Wen, Cuie. (2021). Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. Journal of Materials Science & Technology. 94. 10.1016/j.jmst.2021.03.058.

CHALLENGES OF ADDITIVE MANUFACTURING

LOW VOLUME VS MASS MANUFACTURING

HIGH INITIAL INVEST COST, MATERIALS AND MAINTENANCE

RANGE OF MATERIALS AND SIZE LIMITED

MATERIAL HETEROGENEITY AND STRUCTURAL RELIABILITY

LACK OF STANDARDS

GENERAL ADDITIVE MANUFACTURING APPLICATIONS

Additive Manufacturing Market: Top Three Industries (Source: ARC Advisory Group's Market Research) ノ

ConceptualFumodelspro

Final parts

Page 53

COST CURVES

COST CURVES

J

INDUSTRY 4.0

"A new phase in the industrial revolution that focuses on interconnectivity, automation, machine learning and realtime data. "

RECINNA

SOFÍA PELÁEZ PELÁEZ

Manufacturing Process Engineering Area, Universidad de León (Spain)

spelp@unileon.es

