२ЕGINNA

Introduction to Quantum Computing

Prof. dr. Egon Pavlica
University of Nova Gorica

Outline

- Michelson-Morley experiment
- Two-slits experiement
- Classical computer
- Introduction to qubit
- Two beam—splitters‘ experiment
- Mathematical description of two beam-splitters‘ experiment
- Tutorial on quantum computer (Qiskit)

Leon, 3.5.2024

Michelson - Morley experiment

between April and July 1887

Michelson - Morley experiment

Two-slits experiment setup

Two-slits experiment computer simulation

Two-slits experiment

Two-slits experiment with low light intensity

We don＇t know where a single photon will travel！！！

Mathematics

- We don't know where a single photon will travel -> we know the probability
- We know where bunch of photons will travel - interference pattern

Photons

- Single photon knows where to go
- Photons interfere with each-other
- Photon obeys quantum mechanics

A Simple quantum computer

Basic blocks of quantum computer

Classical computers

Classical computation is about 0 and 1

Classical computer - a box of switches

- Switch in computer is realized by a transistor
- A modern CPU has billions of transistors: e.g. Apple M2 Max - 67 billion transistors

Transistor - electronic switch

- Semiconducting material enabled minituarzation of electric switches

J. Bardeen, W. Brattain 1947

Moore's Law: The number of transistors on microchips doubles every two years
Transistor count
50,000,000,000

- Minituarization reduced insulator thickness to 2-5 nm in 2024.
- Still number of electrons is large
- as a result the quantum phenomena averages out

Quantum state

－Single photon can hold the information
－Single photon hold more than just „0＂or „1＂

Classical state

－Semiconductor can be conducting or non－conducting
－semiconductor can hold the information of „0＂or＂1＂．

Introduction of quantum bit - qubit

Classical bit is " 0 " or " 1 "

$$
B I T=|0\rangle \text { or } B I T=|1\rangle
$$

Quantum bit - superposition of both states - " 0 " and " 1 "

$$
Q u B I T=\alpha \cdot|0\rangle+\beta \cdot|1\rangle
$$

Probability

to be in " 0 " and " 1 " must be 1

$$
\begin{aligned}
& \text { QuBIT }=\alpha \cdot|0\rangle+\beta \cdot|1\rangle \\
& P(\text { QuBIT })=\alpha^{2}+\beta^{2}=1
\end{aligned}
$$

Bloch sphere representation of qubit

$$
\begin{gathered}
|\Psi\rangle=\alpha \cdot|0\rangle+\beta \cdot|1\rangle \\
\alpha=\cos \frac{\theta}{2} \quad \beta=e^{i \varphi} \sin \frac{\theta}{2}
\end{gathered}
$$

Classical vs Quantum bit

Classical Bit
 Qubit

QuBit physical support

Any system with two quantum states:

Excited atoms \& ions

Superconducting loops (image by w. Macready)

Spin of electron

Physical support	Name	Information support	$\|0\rangle$	$\|1\rangle$
Photon	Polarization encoding	Polarization of light	Horizontal	Vertical
	Number of photons	Fock state	Vacuum	Single photon state
	Time-bin encoding	Time of arrival	Early	Late
Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state
Electrons	Electronic spin	Spin	Up	Down
	Electron number	Charge	No electron	One electron
Nucleus	Nuclear spin addressed through NMR	Spin	Up	Down
Optical lattices	Atomic spin	Spin	Up	Down
Josephson junction	Superconducting charge qubit	Charge	Uncharged superconducting island ($Q=0$)	Charged superconducting island ($Q=2 e$, one extra Cooper pair)
	Superconducting flux qubit	Current	Clockwise current	Counterclockwise current
	Superconducting phase qubit	Energy	Ground state	First excited state
Singly charged quantum dot pair	Electron localization	Charge	Electron on left dot	Electron on right dot
Quantum dot	Dot spin	Spin	Down	Up
Gapped topological system	Non-abelian anyons	Braiding of Excitations	Depends on specific topological system	Depends on specific topological system
Vibrational qubit ${ }^{[15]}$	Vibrational states	Phonon/vibron	$\|01\rangle$ superposition	$\|10\rangle$ superposition
van der Waals heterostructure ${ }^{[16]}$	Electron localization	Charge	Electron on bottom sheet	Electron on top sheet

QuBit Processing units Vendors

QPU vendors collected by Olivier Ezratty（see www．oezratty．net for more）：

atoms		electron superconducting loops \＆controlled spin				
					$\begin{aligned} & 000 \\ & 0 \\ & 000 \\ & 000 \end{aligned}$	5
trapped ions	cold atoms		super－conducting	silicon		topological
alone OAQT	PASQAL MUEP	D：CuDVe	amazon Google aci 미N Nord	(intel\| quobly	<al BRANTUMC SaxonQ	Microsoft ■UOHERENT
U intre	（0）Infleqtion $A^{\text {atom }}$	NFEC		Clan diraq	TURING photonic	锊QUANTUM
elecitron FOXCOM	\wedge computing		－Co．	｜EeroQ＞	Onnt	
Qfo 管c CRYSTAL	）（ 1）		ATIYO＇R ATLANTIC			
NEST © Q Qudora			co bleximo FUilitsu		$)^{\text {ranssas }}$	

photons

photons
Ψ PsiQuantum Quandela

QCil photonicsQ
〈Q〉 auanfluence \Rightarrow

Mach-Zehnder interferometer

ャ \forall NNID三と

Qubit at the exit of the laser: $\binom{1}{0}$

After BS: $\alpha\binom{1}{0}+\beta\binom{0}{1}=\binom{\alpha}{\beta}$

Beam-splitter operation: $A=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]$

After first beam-splitter:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right] \cdot\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{i}
$$

After second beam-splitter:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\binom{1}{i}=i\binom{0}{1}
$$

Qiskit

1. Create an account:

https://quantum-computing.ibm.com

1. Create an account:
https://quantum-computing.ibm.com
2. Launch IBM Quantum Composer

Page 44

1. Create an account:
https://quantum-computing.ibm.com
2. Launch IBM Quantum Composer
3. Modify to have one, two or three qubits -> study the changes

4. Create an account:
https://quantum-computing.ibm.com
5. Launch IBM Quantum Composer
6. Modify to have one, two or three qubits -> study the changes
7. Leave only one qubit, and study H and S operations

Hadamard operation: $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$

Phase change: $S=\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$

Setup Beam-splitter gate

1st Beam-splitter: $A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right]$

$$
\begin{aligned}
S \cdot H \cdot S\left[\begin{array}{l}
1 \\
0
\end{array}\right] & =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]= \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]= \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]
\end{aligned}
$$

1st+2nd Beam-splitter: $A \cdot A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ i\end{array}\right]$

$$
(S \cdot H \cdot S) \cdot(S \cdot H \cdot S)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
i
\end{array}\right]
$$

1st Beam spliter

2nd Beam spliter

$$
\begin{aligned}
(S \cdot H \cdot S) \cdot & (S \cdot H \cdot S)\left[\begin{array}{l}
1 \\
0
\end{array}\right]= \\
& =\left[\begin{array}{l}
0 \\
i
\end{array}\right]
\end{aligned}
$$

Compute resource
ibmq＿quito

Status timeline

Created：Jul 06， 2023 9：20 PM In queue

Running
quantum computation time was 0 ms
Completed

Details

Sent from
吠 double beam－splitter

Created on
Jul 06， 2023 9：20 PM
Instance
ibm－q／open／main
Program
circuit－runner
\＃of shots
4096
\＃of circuits
1

Add a measure and run the quantum program！

Set up and run your circuit

Choose a system or simulator

ibm－q／open／main

$$
4096
$$

$$
\text { Job binitit: } 5 \text { remaining }
$$

Tags (optional)

Add tags

Check the number of |0> and |1>

Note: Real quantum computers have also errors!

२ЕGINNAํㅜㄱ

Want more? Take the red pill ;)

Egon Pavlica (mailto:egon.pavlica@ung.si)

