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Supervised VS Semi-supervised Learning
in predictive tasks

Supervised learning:

®* Only labeled data are used to build the predictive model. Discards large
amount of information potentially conveyed by unlabeled instances.

Semi-supervised learning:
®* Both labeled & unlabeled data are used to build the predictive model.



Why semi-supervised learning?
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Why semi-supervised learning?

® Philosophical motivation:
Human brain can exploit unlabeled data.

® Pragmatic motivation:
Unlabeled data is usually cheaper to collect w.r.t. labeled data.



Why semi-supervised learning?

Labeled training data is scarce and expensive
- E.g., experiments in computational biology
- Need for expert knowledge
« Tedious and time consuming

Unlabeled instances are abundant and cheap
 Extract vectorized maps from satellite images
» Assess primary structure of proteins from DNA/RNA



Semi-supervised learning:
Inductive vs Transductive settings

Semi-supervised learning:

®* Both labeled & unlabeled data are used to build the predictive model.

* Transductive setting: the learned model can be applied to make

predictions only on the unlabeled instances known/observed during the
training phase.

* Inductive setting: the learned model can be applied to make predictions
on any unlabeled instance, either known/observed or unknown/unseen
during the training phase.



Semi-supervised learning:
Inductive vs Transductive settings

The difference is also clear in the experimental protocol:

L: number of labelled cases
U: number of unlabelled cases

N: number of examples (possibly not available during learning)

Transductive setting N=U+L: the training set comprises of N examples,
L of which are labeled. Performance evaluated in predicting U = N — L
unlabeled examples.

Inductive setting N >> U+L: the training set comprises of L+U
examples. Performance evaluated in predicting N-L-U unlabeled
examples (or, in some cases, N-L examples).



Semi-supervised / Transductive learning:
early references

* Transductive learning was used for the first time by Vapnik
(Vapnik & Chervonenkis, 1974; Vapnik & Sterin, 1977)

* An early instance of transduction (albeit without explicitly
considering it as a concept) was already proposed by Hartley and
Rao (1968), who suggested a combinatorial optimization on the

labels of the test points in order to maximize the likelihood of
their model

® Interest for transductive learning increased in the 1990s, mostly
due to applications in text classification



Semi-supervised / Transductive learning:

early references

Semi-supervised learning (Chapelle, Schélkopf, Zien 2006)
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf

Semi-Supervised Learning
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Figure 1: Optimal connecting curves are well approx-
imated by paths of short distance edges on a graph.



Smoothness assumption in Supervised
Learning

If two points x, and x, are close, then so should be the
corresponding outputsy,, Y,

Without such assumption, it would never be possible to generalize from
a finite training set to a set of possibly infinite unseen test cases.

The application of this assumption is evident in similarity-based learning:

* Training instances are stored in memory and a similarity metric is
used to compare new instances to those stored/known.

* New instances are classified according to the closest examples in
memory.



Smoothness assumption in Semi-Supervised
Learning

If two points x, and x, in a high-density region are close, then so
should be the corresponding outputsy,, vy,

®* The label function is smoother in high-density regions than in
low-density regions.

®* This assumption entails that if two points are separated by a
low-density region, then their outputs need not to be close.

®* |tisalso called label smoothness assumption.



Smoothness assumption in Semi-Supervised
Learning

Closeness between points is not a decisive factor, if considered by
itself. It has to be considered in the context of the underlying
distribution.
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(a) (b)

(a) The unknown point, denoted by “?”, is classified in the same class as point “*¥”. (b) The
setup after a number of unlabeled data have been provided, which leads us to reconsider our
previous classification decision.



Smoothness assumption in Semi-Supervised
Learning

Closeness between points is not a decisive factor, if considered by
itself. It has to be considered in the context of the underlying
distribution.
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(a) The unknown point, denoted by “?”, is classified in the same class as point “*¥”. (b) The
setup after a number of unlabeled data have been provided, which leads us to reconsider our
previous classification decision.



Cluster assumption

If points are in the same cluster, they are likely to be of the
same class.

Idea: run a clustering algorithm and use the labeled points to
assign a class to each cluster. This is in fact one of the earliest
forms of semi-supervised learning.

The cluster assumption can be seen as a special case of the
semi-supervised smoothness assumption, when clusters are
defined by considering only high-density regions.

Low density separation: the decision boundary should lie in a
low-density region.



Semi-Supervised Learning:
Basic Algorithms

 Self Training

* Generative Models

* S3VMs

e Graph-Based Algorithms
* Deep Learning



Self-training algorithm

* Self-training algorithm:

Train f from the set of labeled examples L
Predict on x € U (unlabeled data)

Add a few most confident (x, f(x)) to L
Repeat



Pros and cons of self-training

PROS
* The simplest semi-supervised learning method.

* A wrapper method, applies to existing (complex)
classifiers.

* Often used in real tasks like natural language processing.
CONS
* Early mistakes could reinforce themselves

* Cannot say too much in terms of convergence.

* But there are special cases when self-training is equivalent to
the Expectation-Maximization (EM) algorithm.



Generative Models

Labeled data:

..........
5 4 3 2 1 o 1 2 3 4 5

Assuming each class has a Gaussian distribution,
what is the decision boundary?



Generative Models




Generative Models

Adding unlabeled data:
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With unlabeled data, the most likely model and its
decision boundary change



Generative Models

They are different because they maximize different
quantities ~ p(X,Y9) PG YL X)9)

p(Xf-'- Yy, ){HW} — Z}*’u p(X!: Y, X, K;W)

Find the maximum likelihood estimate (MLE) of 6,
the maximum a posteriori (MAP) estimate, or the
Bayesian



Generative Models: pros and cons

Pros:
* Clear, well-studied probabilistic framework

* Can be extremely effective, if the model is close to
correct

Cons:

* Often difficult to verify the correctness of the model
* Model identifiability

* EM local optima

* Unlabeled data may hurt if generative model is wrong



Semi-supervised Support Vector
Machines

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

Maximizes “unlabeled data margin”

K.P. Bennett and A. Demiriz. Semi-supervised support vector machines. In Advances in Neural Information
processing systems, pages 368—374, 1999



Semi-supervised Support Vector
Machines

S3VM idea:
® Enumerate all 2!Y! possible labeling of U

® Build one standard SVM for each labeling (and x )

® Pick the SVI\/IE with the largest margin

min Y (1= g f (i) + MllBlF + 22 D0 (1= 1F @)D

i=1 i=I+1

the third term prefers unlabeled points outside the margin. Equivalently, the
decision boundary f = 0 wants to be placed so that there is few unlabeled
data near it.



Semi-supervised Support Vector
Machines: pros and cons

Pros:

* Applicable wherever SVMs are applicable
* Clear mathematical framework

Cons:

* Optimization difficult

* Can be trapped in bad local optima

* More modest assumption than generative model or
graph-based methods, potentially lesser gain



Graph-based semi-supervised
learning: pros and cons

Assumption

A graph is given on the labeled and unlabeled data. Instances
connected by heavy edge tend to have the same label.



Graph-based semi-supervised
learning: pros and cons

The graph mincut problem:
Fix Y7, find Y, € {0,1}"~! to minimize Z Wi |yi — Yjl

Or, equivalently:

min ::CE (y; — Yi;) —I—E wi;(yi — fyj
ye{0,1}n

Combinatorial problem, but has polynomial time solution.



Graph-based semi-supervised
learning: pros and cons

Random walk interpretation: wij
Randomly walk from node i to j with probability 2k Wik

Stop if we hit a labeled node

Compute the harmonic function

f = Pr(hit label 1|start from )




Graph-based semi-supervised
learning: pros and cons

Pros:

* Clear mathematical framework

* Performance is strong if the graph happens to fit the task
* Can be extended to directed graphs

Cons:

* Performance is bad if the graph is bad

* Sensitive to graph structure and edge weights



CNNs for Semi-Supervised

Learning

Unsupervised pretraining

Projection | |4
head .
|:?_| _ Supervised
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Unlabeled

data
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Distillation of
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Figure 3: The proposed semi-supervised learning framework leverages unlabeled data in two ways:
(1) task-agnostic use in unsupervised pretraining, and (2) task-specific use in self-training / distillation.

Chen T., Kornblith S., Swersky K., Norouzi M., Hinton G. Big self-supervised models are strong semi-
supervised learners (2020) Advances in Neural Information Processing Systems, 2020



Semi-Supervised Learning with
Unsupervised Data Augmentation
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Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given z.

Xie Q., Dai Z., Hovy E., Luong M.-T., Le Q.V. Unsupervised data augmentation for consistency training
(2020) Advances in Neural Information Processing Systems, 2020



Deep Semi-Supervised Learning

Deep Semi-supervised Learning
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Fig. 1. The taxonomy of major deep semi-supervised learning methods based on loss function and model design.
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Yang X., Song Z., King I., Xu Z. A Survey on Deep Semi-Supervised Learning(2023) IEEE Transactions on
Knowledge and Data Engineering, 35 (9), pp. 8934 - 8954
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Sources of complexity in real-
world scientific domains

Output space: Structured output prediction, predicting
more complex outputs than in
classification/regression:

* Multi-target regression (MTR)
* Multi-label classification (MLC)
* Hierarchical multi-label classification (HMLC)

Input space: data not independently and identically
distributed

* (lassification/Regression/Link prediction in
* Homogeneous Network data
* Heterogeneous Network data

* Relational data



Semi-supervised learning in
Structured output prediction



Multi-target prediction

e Classification

Descriptive space

Target space

* Regression

Example 1 1 TRUE 0.49 0.69 Yes Blue Rain
Example 2 2 FALSE 0.08 0.07 Yes Green Sun
Example 3 1 FALSE 0.08 0.07 Yes Blue Cloudy
Example 4 2 TRUE 0.49 0.69 Yes Green Sun
Example 5 3 TRUE 0.49 0.69 No Blue Sun
Example 6 4 FALSE 0.08 0.07 Yes Red Cloudy
Descriptive space Target space
Example 1 1 TRUE 0.49 0.69 0.68 0.60 3.91
Example 2 2 FALSE 0.08 0.07 0.56 0.99 7.59
Example 3 1 FALSE 0.08 0.07 0.10 1.69 7.57
Example 4 2 TRUE 0.49 0.69 0.08 0.77 8.86
Example 5 3 TRUE 0.49 0.69 0.11 3.51 2.50
Example 6 4 FALSE 0.08 0.07 0.43 2.10 8.09




Multi-label classification

Descriptive space

Target space

Example 1 TRUE 0.49 0.69 A, B,D
Example 2 FALSE 0.08 0.07 B,D
Example 3 FALSE 0.08 0.07 A D, E
Example 4 TRUE 0.49 0.69 D




Hierarchical multi-label classification

Descriptive space

Target space

Example 1 TRUE 0.49 0.69 $
Example 2 FALSE 0.08 0.07 m
Example 3 FALSE 0.08 0.07 ﬁ

Example 4 TRUE 0.49 0.69 mg%

e. g. Gene function prediction




Structured Output Prediction with
Predictive Clustering Trees

® Generalization of decision trees towards predicting structured
outputs

The top-down induction algorithm for PCTs

Procedure PCT Procedure BestTest [AnnualRain > 1626.0]
Input: A dataset I Input: A dataset E ", 6
Output: A predictive clustering tree Output: the best test ("), its heuristic score P
(t*, h*, P*) = BestTest(E) (h*) and the partition (P*) it induces on the Large tree score 3.6 lenpRemgo - 172.5]
if t* # none then dataset (E) Tree canopy score 4
foreach E; € P* do (t*,h*,P*) = (none,0,0) Understorey score 12 yes 1
| tree; = PCT(E;) foreach possible test t do Litter score 47 Liageati / SRS SO ‘
i Toi . ] i arge tree score 6.1  Large tree score 3
end ‘P = partition Emllu-v(l by i‘(‘m'E ) Lr_;gs score 4.8 "T85 GAEBE BEE A Tres pwsp A da
. EARERDEEs Liitresd) fl = FagiDn )—ZH‘GP “_'1 anplEnt) ;j{\im.).(lb:(ﬂ:oxn; s H-‘(—) Undorstol’(‘;\-‘ score 12.5 Uu(lnrslort‘:\j score 15.7
e‘lbereturu leaf (Prototype(FE)) lf“ (?-’:)1’:’: }PA‘ iA:.((?})tfjﬂzfl;)(tP) e e " Ditienseor: o e seore ;
> G s Logs score 4.7  Logs score 4.2
end | end Weeds score 14.9  Weeds score 14.4
end Recruitment score 5  Recruitment score 7.8

return (1*, h*, P*)

X is descriptive space, Y is target space, and E is a set of
labeled examples

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial intelligence.



Predictive Clustering Trees

® Generalization of decision trees towards predicting structured
outputs

The top-down induction algorithm for PCTs

Procedure PCT Procedure BestTest [AnnualRain > 1626.0]
Input: A dataset E Input: A dataset E ", 6
Output: A predictive clustering tree Output: the best test (%), its heuristic score P =
(#*, h*, P*) = BestTest(E) (h*) and the partition (P*) it induces on the Large tree score 36 lTompRango < 172.5‘
if t* # none then dataset (E) Tree canopy score 4
foreach E; € P* do (t*,h*,P*) = (none,0,0) Understorey score 12 yed o
| tree; = PCT(E;) foreach possible test t do Litter score 4T farsets / s
g i iy Yoy - i arge tree score 6.1  Large tree score 3
sal i y e oy |}3,\ S - Lrjgs ki 48 Tree canopy score 4 Tree canopy score 4.1
return node(t*, |J,{tree;}) h=Vary(E,Y )_ZElef’ WV(H'_;(E,. Y) E.-m.z‘(lb:tscor(; o 14{) Unidesitores sote: 125  Undsstoies G 157
e‘lsel‘eturu leaf (Prototype(FE)) lt‘ (t’ ?i,;f }7;\’?;(((}) t}ili?713(3{f. e R "~ Ditfemscane yL e score ;
: o B #E Logs score 4.7  Logs score 4.2
end end Weeds score 14.9  Weeds score 14.4
end Recruitment score 5  Recruitment score 7.8

return (1*, h*, P*)

X is descriptive space, Y is target space, and E is a set of . . .
labeled examples Variance function considers only

target space Y



Semi-supervised predictive clustering trees

Variance function: Variance of target space + Variance of descrir‘)tive space
|
[ \ | !

Vare(E,Y,X) =w - Varg(E,Y) + (1 —w) - Vars(E, X)

w € [0, 1] = controls the amount of supervision:

w=0 O<w<l w=1
Unsupervised Semi—supervised Supervised

® WhereXis descriptive space, Y is target space, and E = E; U E,, is a set of labeled
and unlabled examples

®  Assumption: examples similar in descriptive space have similar targets as well

Levati¢, J., Kocev, D., Ceci, M., & Dzeroski, S. (2018). Semi-supervised trees for multi-target regression. Information Sciences.
Levati¢, J. (2017). Semi-supervised Learning for Structred Output Prediction: Doctoral Dissertation (Doctoral dissertation).



Semi-supervised predictive clustering trees

Variance of target space:

p

1

~

|
w(cy)

1

e;€ky

Vars(E,Y) = ¢ (

\ !

Variance of descriptive space:

1
Varg(B,X)=5-| > Var(BX)+ 3

X is numeric X is nominal

* Var and Gini are normalized by variance on the entire training set

=y Var(EY;), if Y consists of T continuous variables

: - Var(E.Y;), if Y ts of T' cont bl
7 iy . T . . e . .

L -3, Gini(E,Y;), if Y consists of T nominal variables

I—}— Y (1(1,,-.1_,)2) , if Y is a hierarchy of classes

Gini(FE, X_,-))

Can handle
several
structured
output types

Can handle
numeric and
nominal
attributes

Levati¢, J., Kocev, D., Ceci, M., & Dzeroski, S. (2018). Semi-supervised trees for multi-target regression. Information Sciences.
Levatic, J. (2017). Semi-supervised Learning for Structred Output Prediction: Doctoral Dissertation (Doctoral dissertation).



Semi-supervised random forests

® Based on random forests for structured outputs (Kocev et al.

2013)

® Semi-supervised PCTs used as base learners



Statistical analysis

p-values of Wilcoxon paired signed rank test (¢ = 0.05)*

Number of labeled examples

Methods 50 100 200 350 500

Multi-target regression

PCT VS. SSL-PCT 0.093 0.022 0.028 0.022 0.009

RF VS. SSL-RF 0.959 0.445 0.445 0.333 0.445
Multi-label classification

PCT vs. SSL-PCT 0.013 0.008 0.008 0.093 0.053

RF vs. SSL-RF 0.241 0.415 0.262 0.308 0.575

Hierarchical multi-label classification
PCT vs. SSL-PCT 0.834 0.093 0.028 0.028 0.028
RF vs. SSL-RF 0.345 0.345 0.249 0.345 0.345

*In all tests, semi-supervised algorithms have better sum of ranks



SSL-PCTs for primitive outputs

p-values of Wilcoxon paired signed rank test (¢ = 0.05)*

Methods

Number of labeled examples

25 50 100 200 350 500
Binary classification
PCT VS. SSL-PCT 0.009 0.388 0.066 0.005 0.019 0.019
RF VS. SSL-RF 0.529 0.192 0.002 0.099 0.093 0.012
Multi-class classification
PCT VS. SSL-PCT 0.248 0.084 0.014 0.007 0.192 0.081
RF VS. SSL-RF 0.563 0.011 0.011 0.003 0.004 0.02
Regression
PCT VS. SSL-PCT 0.011 0.01 0.004 0.367 0.48 0.583
RF VS. SSL-RF 0.008 0.065 0.008 0.023 0.034 0.126

*In all tests, semi-supervised algorithms have better sum of ranks



Semi-supervised random forests

Self-training for multi-target regression (Levatic et al. 2017):

® Another semi-supervised method we developed based on random
forests

® lteratively uses its own predictions on unlabelled data as additional
training examples

Levati¢, J., Kocev, D., Ceci, M., & Dzeroski, S. (2018). Semi-supervised trees for multi-target regression. Information Sciences.



Quantitative Structure-Activity Relationship (QSAR)

Predict biological activity of a molecule from its structure

T mm
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A standard part of drug discovery process



RRMSE

Quantitative Structure-Activity Relationship (QSAR)

® Prediction of activity of 4 biological targets from ChEMBL database
® Semi-supervised regression trees and random forests

T 1.1 T 1.05 —— : : ; 11 —— T T ;
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Levatic, J., Ceci, M., Stepisnik, T., Dzeroski, S., & Kocev, D. (2020). Semi-supervised regression trees with application to
QSAR modelling. Expert Systems with Applications.



Analysis of Network and

Relational Data
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Autocorrelation

Given a random variable Y representing the output of some
observations x,, and a distance function defined on observations,
autocorrelation is the correlation among output values vy, strictly
attributable to the proximity of observations according to the
distance function.

Autocorrelation introduces a deviation from the independent
observations' assumption of classical statistics.

Positive (negative) autocorrelation is the tendency for similar
(dissimilar) values to cluster.

Positive autocorrelation is more common than negative
autocorrelation in spatial and social phenomena.



Positive autocorrelation vs
smoothness assumption

In the semi-supervised setting (when the similarity between two
observations is defined so that two observations are never considered
similar when they are separated by low-density regions):

Positive autocorrelation entails the semi-supervised smoothness
assumption



Positive autocorrelation vs
smoothness assumption

Autocorrelation is valid in networked data, in spatial data (spatial
autocorrelation), in relational data:

* sociology (e.g., social relations affect social influence),
* web mining (e.g., related pages on the same topic),
* social networks (e.g. homophily property),

* bioinformatics (e.g., proteins located in the same place in a cell
are more likely to share the same function than randomly
selected proteins).

In these fields, the “distance” should reflect the properties of interest.



Spatial Data

Features tend to take values, for pairs of observations that
are spatially close, that are more similar than expected for
random pairs of observations.

Surf Air Temp, mean (°C) 1.10°
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Networked Data

®* Nodes represent entities

* Links represent existing o i
relations between entities & XXQ .8

* Nodes with known labels are i
interlinked with nodes for
which the label is unknown
* Labels are sparse
Examples:
- Internet

- Social networks
- Sensor networks ...



Networked Data

A collection of interconnected entities

Entities can be
®* homogeneous/heterogeneous
® Labelled/unlabelled
® Described by a single / multiple attribute(s) / structured representations
® Defined at various levels of abstractions

Connections/Links can be
® Homogeneous / heterogeneous
® Labelled / unlabelled
® Binary / n-ary
® Defined at various levels of abstraction



Across-Network Inference (inductive)

® Learning from one network and applying the learned model to a
separate, presumably similar, network.
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Within-Network Inference
(transductive/semi-supervised)

Training entities are connected directly to those entities whose labels
are to be estimated

Database




Biological Network Analysis

Semi-Supervised Multi-View Learning for Gene Network
Reconstruction

We proposed a semi-supervised to
reconstruct the structure of gene regulatory networks from gene
expression data. The proposed method:

° of multiple prediction methods

* is able to work in the setting, or
in the

* isable to manage a in the data

. to build k classifiers, and exploits slight differences

between multiple (possibly related/similar) prediction methods,
avoiding issues due to collinearity

M. Ceci, G. Pio, V. Kuzmanovski, S. Dzeroski, Semi-Supervised Multi-View Learning for Gene Network Reconstruction, PLoS One 10(12): e0144031, 2015



Biological Network Analysis

Semi-Supervised Multi-View Learning for Gene Network
Reconstruction

Prediction scores obtained by

each base method Known
existing links
x’, x’ ; i . p -
, Pal ”) Each example is associated to a Each example is associated with a
X7, Fiﬂx ) %, P207) vector of prediction scores D —

X", pa{x") X, p(x') X, p(x'), 1(x)
i E> <, Pl C:> . POC), 160)

., ., 1. Assign (positive)
X", ps(x”)

labels to examples

l 2. Construct K views

K views of the same dataset

X', qu(x), I(x’)

Semi-supervised o
x”, q1(x”), I(x”’) —-— 1

ensemble-based classifier 1

X', 2(x), I{x’)

Semi-supervised !
X”, qz(xn)’ I(X”) :> S

1

1

= Final prediction scores
1

' x', f'(p(x’))

d

| )

4. Combine scores, consider

ensemble-based classifier 2

X, g (X), 10x’)

)

|

|

L » ::> Semi-supervised take top-ranked examples
X7, o (x”7), 1(x”’) ensemble-based classifier K as positive for the other

views and repeat.

3. Build a classifier for each view

M. Ceci, G. Pio, V. Kuzmanovski, S. Dzeroski, Semi-Supervised Multi-View Learning for Gene Network Reconstruction, PLoS One 10(12): e0144031, 2015



Some experimental results
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Some experimental results

Dream5Yeast 5950
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Social media: the problem

® Social media can be harmful since they can be exploited by risky
users to harass people or influence them to perform illegal acts.

® Everyday, many social pages spread religious fundamentalism and

political extremism.

@ Donald J. Trump & @realDonaldTrump - 3h

This Tweet violated the Twitter Rules about glorifying
violence. However, Twitter has determined that it may be in
the public's interest for the Tweet to remain accessible.

Learn more

T

&

View

@ Donald J. Trump &
@realDonaldTrump
| WON THIS ELECTION, BY A LOT!

@ Official sources may not have called the race when this was Tweeted

10:36 PM - Nov 7, 2020 - Twitter for iPhone



SAIRUS framework: idea

Classical social network analysis frameworks o P
consider only one perspective when classifying 1%
users: ®
. . o @ @ ®
the network topology —i.e., the relationships
among users in the network (follows, likes, & @ ®
etc...),
® the user generated content —i.e., the posts or
the tweets shared by a specific user. Bipay = coo!_,‘
yasp analy

Our system not only aims to exploit both aspects, e Szﬂ i’ﬂ ple
but also considers spatial information. | 'S°Fé'a!_|¥ -

conl
sle

...........



SAIRUS framework: a general view
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Pellicani, A., Pio, G., Redavid, D., & Ceci, M. (2023). SAIRUS: Spatially-aware identification of risky users in
social networks. In Information Fusion (Vol. 92, pp. 435—-449). Elsevier



Result Comparison: System Configuration

Configuration
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C: content
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Heterogeneous Network Analysis

Multi-type clustering and classification from heterogeneous networks

a novel clustering algorithm that identifies (i.e., consisting of

multiple types of objects and links), and from
attributed heterogeneous networks, that are exploited also for

tasks are solved using a weighted
majority voting approach, where the weight is based on the number of
labelled examples in the clusters the considered unlabelled example falls
into.

The construction of the clusters is based on the concept of

, that are automatically identified from the
network, and on the attributes of the nodes involved in the
meta-paths.

G. Pio, F. Serafino, D. Malerba, M. Ceci, Multi-type clustering and classification from heterogeneous networks, Information Sciences, 425:107-126, 2018

E. Barracchia, G.Pio, D. D'Elia, M. Ceci, Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering, BMC Bioinformatics 21, 70, 2020



LP-HCLUS

LP-HCLUS (Link Prediction through Hierarchical CLUStering):

» performs link prediction on heterogeneous attributed networks

« exploits a heterogeneous clustering technique

* adopts a similarity measure based on the features and the relationships in the network
* has been applied to the biological domain

Fs,2 0+




LP-HCLUS

Workflow
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LP-HCLUS

Quantitative evaluation

HMDD v3

P id int (NN)

category varchar(100)

disease varchar(100) (NN)
root_name varchar(100)
doid varchar(30)
icd10cm varchar(30)
mesh varchar(20)

4

‘ oﬁ mirna varchar(30) (NN)
-~ ’)

mirna varchar(30)

e

disease varchar(100)

. pmid varchar(30)
omim varchar(20)

description text
hpo varchar(20)

4
Table # of instances
Disease 675
MIiRNA 985
Dataset available at: Disease - MiRNA 20.859
http://www.cuilab.cn/hmdd ’



LP-HCLUS

Quantitative evaluation

HMDD v3
Level 1 Level 2 Level 3
K K K
e | P-HCLUS-NOLP e N CP red = | P-HCLUS _AVG LP-HCLUS _MAX = | P-HCLUS _MIN

e | P-HCLUS_EC e HOCCLUS2_AVG  e=——=HOCCLUS2_MAX e=——=HOCCLUS2_MIN  e=—HOCCLUS2_EC



LP-HCLUS

Quantitative evaluation
Integrated Dataset
EEE

f id varchar (NN)
nerna varchar(200)
disease varchar(200)
type varchar(100)
detection varchar(50) |y
year smallint 1
descr varchar(1000)
chromosome varchar(20)
refseq varchar(300)
pmid varchar(20)

P name varchar(200) (NN) ’

biotype varchar(100)

e

» id varchar (NN)
A mima varchar(200)
A incrma varchar(200)

Table # of instances

Disease 7,049
NcRNA 1,015

id varchar (NN)

AP ncena varchar(200)
Ve

name varchar (200) (NN)

mesh_disease_class varchar(1000)

umls_semantic_type varchar(150)

id varchar (NN)

target varchar(50)

‘ﬂ
)

disease varchar(200)

score float

N

source varchar(20)
num_pmid smallint
num_snp smallint

cui varchar(50)

f name varchar(50) (NN)

target varchar(50) Target

interaction varchar(30)
inter_type varchar(30)
description varchar(1000)
refseq varchar(200)

pmid int

pubdate smallint
reference varchar(1000)

90,242

Disease - NcRNA

3,830

Disease - Target

26,522

NcRNA - Target

1,055

LncRNA - MiRNA

70




LP-HCLUS

Quantitative evaluation
Integrated Dataset

Level 1 Level 2 Level 3
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LP-HCLUS

Qualitative evaluation

In literature, the IncRNA h19 appears in the regulation of many processes impacting diseases, but

associations with "bone diseases", as predicte

by LP-HCLUS, are not reported.

Bone diseases can have different origins and can be also related to hyperfunction or
hypofunction of the endocrine glands. Both the output of LP-HCLUS and data in MNDR confirm

the existence of associations between h19 and diseases which involve endocrine glands.

This indicates that h19 can have a relationship with endocrine glands functions and, therefore,
can be related to bone diseases as predicted by LP-HCLUS.

ncRNA Disease Tissue LP-HCLUS MNDR
h19 ovarian neoplasms endocrine glands 0.7052352 | s: 0.8589, p: 0.1097
h19 pancreatic cancer endocrine glands 0.8150848 s: 0.8808
h19 pancreatic ductal adenocarcinoma | endocrine glands 0.6575157 s: 0.9526

h19

thyroid cancer

endocrine glands

0.7732385

s: 0.8808, p: 0.1097

AN



Relational Data

e Data stored in multiple
interconnected tables

* Consider features of non-
target tables following the
relations that connect
tables

* Handle complex relationships

movies

id_movie
title
release_date
url

category

ratings

e.g. one movie can have many ratings

from different users

A

id_user /'
id_movie f
rating

date

id_rating

users

region

r_regionkey
r_name

r_comment

Y

userid
age
gender
nation

occupation

”

Y

nation

n_nationkey
n_name
n_regionkey

n_comment

Ve




Re3py

Re3py: A novel relational tree-based method

e Extends traditional tree ensembles to handle relational data
e Structural approach which preserves the original data

structure and navigates the relational links directly during the

learning process
* Split candidates are based on conditions across paths
involving multiple tables and aggregates of attributes.

* Provides feature rankings in the relational context

M.Petkovi¢, M.Ceci, G.Pio, B.Skrlj, K.Kersting, and S. DZeroski. Relational tree ensembles and feature rankings. Knowledge-Based Systems, 251:109254, 2022



Feature construction

1. Finding task-relevant objects for the movie m:
e.g. users who rated the movie

2. Aggregating the values:
\ e.g. average age of users who rated the movie

(r2) -(u2)
®)- avg([22])
gvg([22, 62])

< 3- =




Semi-supervised Re3py

Working in the semi-supervised learning setting
o Extending the heuristics used during the tree construction (Gini) to also
consider the descriptive space
Ginip(E) = wGinif (E') + (1 — w)Ginif (E)

I
Heuristics of the
original Re3py

where w € [0, 1] controls how much the target space and the descriptive space contribute to the Gini estimation.

Gini over the descriptive space

Ginif (E) = %( Z Var;(E) + Z Ginii(E)>

Xi;€X and X; is numeric Xi;€EX and X; is nominal



Experimental Setting
Dataset: Carcinogenesis

min_sample_leaf =1 min_sample_leaf =5
Method w Precision Recall Fl-score Precision Recall Fl-score
Supervised - 0.538 0.526 0.500 0.531 0.504 0.389
Semi-supervised | 0.0 0.420 0.419 0.419 0.414 0.413 0.409
Semi-supervised | 0.1 0.444 0.444 0.439 0.414 0.413 0.409
Semi-supervised | 0.2 0.461 0.461 0.455 0.414 0.413 0.409
Semi-supervised | 0.3 0.428 0.427 0.424 0.414 0.413 0.409
Semi-supervised | 0.4 0.482 0.483 0.480 0.414 0.413 0.409
Semi-supervised | 0.5 0.441 0.440 0.438 0.414 0.413 0.409
Semi-supervised | 0.6 0.342 0.341 0.341 0.444 0.444 0.439
Semi-supervised | 0.7 0.590 0.588 0.575 0.444 0.444 0.439
Semi-supervised | 0.8 0.508 0.508 0.508 0.444 0.444 0.439
Semi-supervised | 0.9 0.465 0.472 0.455 0.420 0.428 0.402
Semi-supervised | 1.0 0.498 0.498 0.497 0.420 0.428 0.402




Conclusions

Very high interest in semi-supervised learning in the last 4-5 years

2007 | -

However, when analyzing scientific data new challenges arise and
more work is necessary:

® Structured output prediction

®* Network data

® Relational Data



Conclusions

Future work:
® Time series data

®* Network data + Structured output prediction (e.g. gene function
prediction)

Network data + time series data (e.g. ecological data)

Theoretical questions:

®* Why many studies report of negative effects in Semi-supervised
learning?

® How much the smoothness assumption influences the beneficial
effects of Semi-supervised learning?
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