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Outline
▷ AI for Science: Artificial Intelligence (Machine Learning) methods 

applied to (physical) sciences. Sometimes these are off the shelf methods, but 
to maximize their impact they need to be developed specifically for physics 
applications (e.g. physics symmetries, spatial structure etc.)

▷ Three tasks: data generation, inference and anomaly detection
▷ Each have a different training algorithm, but can be unified in a single 

method
▷ Ultimate goal: optimal data analysis (optimal inference) for scientific 

discovery 
▷ Optimal: achieve smallest error (generalization), robust against unknown 

contaminations (robustness), have reliable verifications such that scientists 
can accept the results (trustworthy)
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Introduction to AI/ML

Part 1:



What is covered by AI/ML and by whom?

A typical sample of topics at ICML or Neurips (leading ML conferences) 

Who are AI practitioners? Mostly from computer science and  statistics… 
Growing community at the intersection of domain sciences and AI 
Note: for the purpose of this talk AI=ML



AI for Physical sciences
1) The goal of AI in physics is to extract scientific information using a data driven 
approach. Typical application is data inference, e.g. learn about probability distribution 
of some parameters y from data x p(y|x)

2) In AI this is done by using training data (X,Y) to learn p(y|x) of parameters y we wish to 
extract from some real data x which is not in the training data set

3) Often we do not have real data to train on. We may however have simulations. In this 
case simulations become training data. The corresponding concept is called Simulation 
Based Inference (also known as Likelihood Free Inference, Implicit Likelihood etc.)

4) While this has been very successful in some fields, in physics there are very few 
success stories (Experimental HEP being one). As we improve our AI methods this is 
likely to change (e.g. cosmology)!



Discriminative (supervised) learning
1) Here we wish to determine parameters y from data x: a common 

discriminative  training objective min
w

 ∑ (y
w

(x)-y
true

)2            

over all the training data (X,Y
true

). 

2) Typically y
w

(x) will be a parametrized Neural Network that takes in the 
data x and outputs y

w
(x). NN may have several layers (deep learning), but 

at each layer the operations are very simple: take a linear combination of 
previous layer inputs times weights and perform a very simple nonlinear 
operation f in the end, so each layer output is f(wx). We learn the weights 
w to minimize the loss. 

3) Posterior Estimation: more generally, we can predict posterior p(y|x), 
which may be a Gaussian defined by the mean y

mean
(x) and the variance 

σ2(x), or some other distribution. 

4) When y is discrete this is a classification problem. In this case p(y|x) 
represents the predicted class y probability given x. 



Generative (unsupervised) learning
1) The goal is to generate new fake data, so it is like a simulation. This is a very 
active area, with many applications (e.g. ChatGPT,Dall-E2…). We can describe it 
as drawing samples of data x from some probability distribution p

w
(x). Natural 

for unlabeled data (unsupervised learning). 

(one possible) Generative training objective: maximize
w

 log p
w

(x)

2) For data inference more interesting is high p(x)       low p(x)

 likelihood estimation, density learned 

conditionally on y, p(x|y). 

Use Bayes Theorem p(y|x)=p(x|y)p(y)/p(x)

3) enables anomaly detection: an outlier has 
low max

y
 p(x|y), generalization of chi squared test



Generative versus discriminative learning
1) Both methods can give p(y|x), but which is better? For regression or 
classification the traditional answer (originated by Vapnik) is that 
discriminative is always better

2) Later work (e.g. Ng & Jordan 2003) gives a more nuanced answer: 
discriminative is always at least as good or better in the limit of large 
data, but generative may reach its own asymptotic limit faster (using 
less training data). 

3) Modern view (this talk): hybrid generative+discriminative training  
gives the best of both worlds



Introduction to cosmology

Part 2:



Current Cosmological Standard Model

Cosmic Microwave 
Background (CMB)

seeds of 
structure we 
see today

known



Mass of neutrinos? (M𝝂)

Total matter content in the Universe, 𝛀m? 

Nature of dark energy? Time-dependence?

Tensions between parameters inferred from different observables? 

new physics 

Inference Model Testing Discovery

transient signals

unknown signals

big, high-resolution, complex data

Signatures of inflation?

Open questions and how to answer them



We are in the golden era of cosmology: huge investments in new experiments 



Dark Energy Spectroscopic Instrument (DESI)

Vera Rubin Observatory (LSST) 

20 billion galaxies
17 billion  stars
20 terabyte data/day

40 million galaxies
10 million stars

star
starburst galaxy

 galaxy

CMB-S4

Cosmic Microwave Background 

50 PB total database

New surveys



Current cosmological data analysis: 2 point correlations





New Data require new Data Analyses
that

1) can handle such large datasets

2) Is optimal: can extract their full information content 

Can we capitalize on the recent success of AI/ML and Statistical 
Inference?  YES!

Can we take off the shelf AI/ML codes to do so? NO!
We need to account for symmetries, spatial correlations, high 
dimensionality and high stochasticity



Stochastic and high dimensional nature of cosmology data 
1) Each realization is different, information is in the correlations on all scales
2) Data is pixelized or voxelized, with O(107) or more dimensions
3) Each training dataset is an N-body simulation, very expensive
4) Very difficult to “interpolate” given a finite number of simulations
5) Our approach: learn the data structure first using generative learning, followed by 

generative+discriminative learning to reach optimality



AI for Physics: Robust and Optimal Analysis of 
Weak Gravitational Lensing with Normalizing 

Flows

Work led by Biwei Dai

Part 3:



Weak Lensing of Galaxies

LSST

large-scale structure background galaxies

lensing 

projection

Rubin data size: 
109  galaxies



Optimal cosmological data analysis
● Optimal: Extract maximum amount of information from the data

● Bayesian Inference: MCMC sampling  of initial conditions and parameters 

● Supervised learning with AI/ML to predict posterior  p(y|x): discriminative

● Learning the likelihood p(x|y) directly with AI/ML: generative

○ Con: High dimensionality of x. 

○ Model: Normalizing Flows
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Use symmetries and 
multiscale 

architecture  to 
reduce the curse of 

dimensionality



source: http://cosmicweb.uchicago.edu/filaments.html

random initial fluctuations

depend on cosmological parameters

random realization is 
independent from 
cosmological parameters

structure formation galaxies

data

Generating training data with N-body simulations
cosmological structure formation: an N-body simulation and a galaxy formation model
A lot of progress in recent years with differentiable fast simulations (FastPM, FlowPM, PWMD…)







Stack all the lens planes, add survey mask
HypersupremeCam (HSC) data on Subaru
Later Rubin (LSST) etc. 
Real world complications easy to add: survey mask, noise etc.

We now have realizations of data x
For each simulation we can make many maps by making 
different projections
Repeat the process for different values of cosmological 
parameters y
y: we can vary initial density amplitude, matter density, dark 
energy, neutrino mass etc. 



Normalizing Flows
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Credit: 
https://lilianwen
g.github.io/lil-lo
g/2018/10/13/fl
ow-based-deep
-generative-mo
dels.html● Bijective mapping f between data x and latent variable z  (z = f(x), z ~ π(z))

○ Evaluate density: p(x) = π(f(x)) |det(df/dx)|

○ Sample: x = f-1(z)  (z ~ π(z))



Normalizing Flow training
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● 1D example

● Training objective: maximize  
log p(x) over training data

            p(x) = π(f(x)) |det(df/dx)|

● Evaluate density: 
p(x) = π(f(x)) |det(df/dx)|

● Sample: x = f-1(z)  (z ~ π(z))

Credit: https://sites.google.com/view/berkeley-cs294-158-sp20/home

data x NF f latent variable z=f(x)



How to design Normalizing Flows for physics?
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NF by itself requires:

- Easy evaluation of the inverse
- Easy evaluation of the Jacobian 

determinant

Physics  applications require:

- Spatial Structure modeling, high dimensionality 
(pixels, voxels): coarse graining, multi-scale 
correlations

- Symmetries (translation, rotation etc.)
- Ability to learn from very stochastic data 

How do we parametrize our NF, given these considerations?

1) MultiScale Flow (Dai & Seljak 2023)
2) Translational and Rotational Normalizing Flow (Dai & Seljak 2021)



Multiscale flow (MSF): a wavelet based flow (Dai & Seljak, 2023)
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▷ Consider a cosmological field with 2562 resolution:

x
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Multiscale 
flow

log p(x
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|y)

= log p(x
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, x
128,extra

|y) + C

= log p(x
128

|y) + log p(x128,extra|x128, y) + 

C

= log p(x
64

|y) +  log p(x64,extra|x64, y) 

   + log p(x128,extra|x128, y) + C

= log p(x
32

|y) +  log p(x32,extra|x32, y) 

   + log p(x64,extra|x64, y) 

   + log p(x128,extra|x128, y) + C
Training objective: max log 
p(x|y)+a*log p(y|x) gradually 
increasing  a from 0



MSF: A fast and accurate simulator of WL maps 

Perfect agreement with real simulations on the 
power spectrum and one point distribution

Notice how stochastic the data is 



30

Reliable Uncertainty Quantification with NF posteriors 
(generalization: accurate prediction on out of sample data)

● Consistent posteriors from different scales Posterior p(y|x)=p(x|y)p(y)/p(x)  
prior p(y) is assumed to be  flat here

On simulated data the errors are properly 
calibrated and in agreement with frequentist 
notions of error quantification (68/95% of true 
simulation values are within 68/95%  posterior 
contours)
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Trustworthy AI
Robustness — how to identify unknown unknowns (anomalies)? 
1) scale dependence of unknown systematic effects on WL maps

unknown 
systematic 

effect
(gaussian 

noise)

● Consistent posteriors from different scales ● Inconsistent small scale posterior

One of the few ways to identify unknown unknowns!
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Two independent  ways to identify unknown unknowns!

Max density estimation max
y
 p(x|y) can be 

used for unsupervised anomaly detection: if 
the data are an outlier then the density will 
be low even when maximized over y

This can be done as a function of scale

Trustworthy AI
2) anomaly detection with density estimation



How much better is MSF versus standard power spectrum?

MSF up to 10 x better than 
power spectrum

Equivalent to 10x larger 
survey! It is rare to achieve 
such improvements solely 
from a better analysis

Better than other recent 
methods (CNN, scattering 
transform)

Example: simulated HSC 
or Rubin (LSST) WL data

Two key cosmological 
parameters are 
amplitude of 
fluctuations S

8
 and dark 

matter density O
m



Future plans
Add complications: intrinsic alignments, baryonic feedback, 
redshift uncertainty etc.

Finish the analysis of HSC data: could significantly improve 
cosmological parameters

Develop the analysis pipeline for Rubin and Euclid: much larger 
area needs much large simulation volumes



. 

Summary

● AI for Cosmology:: AI can be used for synthetic data generation (simulations), data 
analysis, corrupted data restoration, anomaly detection….

● For many physics applications combining generative and discriminative learning is 
better than discriminative only, and offers more information (trustworthy AI)

● AI for cosmological weak lensing analysis: potential improvements of 10x over 
power spectrum in weak lensing

● AI for science: every field is different, success is not guaranteed, but there are 
many fields where AI has the potential to significantly improve current baselines


