Scientific discovery and ML in cosmology
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Al for Science: Artificial Intelligence (Machine Learning) methods
applied to (physical) sciences. Sometimes these are off the shelf methods, but
to maximize their impact they need to be developed specifically for physics
applications (e.g. physics symmetries, spatial structure etc.)

Three tasks: data generation, inference and anomaly detection

Each have a different training algorithm, but can be unified in a single
method

Ultimate goal: optimal data analysis (optimal inference) for scientific
discovery

Optimal: achieve smallest error (generalization), robust against unknown
contaminations (robustness), have reliable verifications such that scientists
can accept the results (trustworthy)



Part 1.

Introduction to Al/ML



What is covered by Al/ML and by whom?

A typical sample of topics at ICML or Neurips (leading ML conferences)

» General Machine Learning (active learning, clustering, online learning, ranking, reinforcement learning, supervised, semi- and self-
supervised learning, time series analysis, etc.)

Deep Learning (architectures, |generative modeis|, deep reinforcement learning, etc.)

Learning Theory (bandits, game theory, statistical learning theory, etc.)

« |Optimization|(convex and non-convex optimization, matrix/tensor methods, stochastic, online, non-smooth, composite, etc.)

Probabilistic InferenceMBayesian methods| graphical models,|Monte Carlo methodsi etc.)

. h’rustworthy Machine Learning| (accountability, causality, fairness, privacy, , etc.)
» Applications (computational biology, crowdsourcing, healthcare, neuroscience, social good, climate science, etc.)

Who are Al practitioners? Mostly from computer science and statistics...
Growing community at the intersection of domain sciences and Al
Note: for the purpose of this talk AlI=ML




Al for Physical sciences

1) The goal of Al in physics is to extract scientific information using a data driven
approach. Typical application is data inference, e.g. learn about probability distribution
of some parameters y from data x p(y|x)

2) In Al this is done by using training data (X,Y) to learn p(y|x) of parameters y we wish to
extract from some real data x which is not in the training data set

3) Often we do not have real data to train on. We may however have simulations. In this
case simulations become training data. The corresponding concept is called Simulation
Based Inference (also known as Likelihood Free Inference, Implicit Likelihood etc.)

4) While this has been very successful in some fields, in physics there are very few
success stories (Experimental HEP being one). As we improve our Al methods this is

likely to change (e.g. cosmology)!



input hidden  output

Discriminative (supervised) learning e e

1) Here we wish to determine parameters y from data x: a common
discriminative training objective min_ > (yW(x)-ytrue)2

over all the training data (X,Y_ ). /

2) Typically y_(x) will be a parametrized Neural Network that takes in the
datax and outputsy_(x). NN may have several layers (deep learning), but
at each layer the operations are very simple: take a linear combination of
previous layer inputs times weights and perform a very simple nonlinear
operation f in the end, so each layer output is f(wx). We learn the weights
w to minimize the loss.
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3) Posterior Estimation: more generally, we can predict posterior p(y|x), ,z' QO
which may be a Gaussian defined by the meany___ (x) and the variance O ! o O
0?(x), or some other distribution. O 2 QO :
4) Wheny is discrete this is a classification problem. In this case p(y|x) 7 @ O 3
represents the predicted class y probability given x. .




Generative (unsupervised) learning

1) The goal is to generate new fake data, so it is like a simulation. This is a very
active area, with many applications (e.g. ChatGPT,Dall-E2...). We can describe it
as drawing samples of data x from some probability distribution pw(x). Natural
for unlabeled data (unsupervised learning).

(one possible) Generative training objective: maximize logp_(x)

2) For data inference more interesting is
likelihood estimation, density learned
conditionally ony, p(x]y).

Use Bayes Theorem p(y|x)=p(x|y)p(y)/p(x)

3) enables anomaly detection: an outlier has
low max p(x|y), generalization of chi squared test

Generative



Generative versus discriminative learning

1) Both methods can give p(y|x), but which is better? For regression or
classification the traditional answer (originated by Vapnik) is that
discriminative is always better

2) Later work (e.g. Ng & Jordan 2003) gives a more nuanced answer:
discriminative is always at least as good or better in the limit of large
data, but generative may reach its own asymptotic limit faster (using
less training data).

3) Modern view (this talk): hybrid generative+discriminative training
gives the best of both worlds



Part 2:

Introduction to cosmology



Current Cosmological Standard Model

Cosmic Microwave
Background (CMB)

Inflation

seeds of
structure we
see today

Dark Energy
Accelerated Expansion

Development of
Galaxies, Planets, etc.
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Open questions and how to answer them

big, high-resolution, complex data

| |

Inference Model Testing Discovery
Nature of dark energy? Time-dependence? unknown signals
Mass of neutrinos? (M) new physics

Tensions between parameters inferred from different observables?

Total matter content in the Universe, Q_7 transient signals

Signatures of inflation?



We are in the golden era of cosmology: huge investments in new experiments
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Dark Energy Spectroscopic Instrument (DESI)

New surveys

40 million galaxies
10 million stars

Vera Rubin Observatory (LSST)

20 billion galaxies
17 billion stars
20 terabyte data/day
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Current cosmological data analysis: 2 point correlations

Gaussian density field
Fully described by the
power spectrum

Multipole moment, ¢
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Many proposals for higher order statistics ..
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New Data require new Data Analyses
that

1) can handle such large datasets

2) Is optimal: can extract their full information content

Can we capitalize on the recent success of Al/ML and Statistical
Inference? YES!

Can we take off the shelf Al/ML codes to do so? NO!
We need to account for symmetries, spatial correlations, high
dimensionality and high stochasticity



Stochastic and high dimensional nature of cosmology data

1) Each realization is different, information is in the correlations on all scales

2) Datais pixelized or voxelized, with O(10") or more dimensions

3) Eachtraining dataset is an N-body simulation, very expensive

4) Very difficult to “interpolate” given a finite number of simulations

5) Ourapproach: learn the data structure first using generative learning, followed by

generative+discriminative learning to reach optimality

03 =0.6 og=0.7 0s=0.8 0s=0.9 og=1.0 og=1.1




Part c}

Al for Physics: Robust and Optimal Analysis of
Weak Gravitational Lensing with Normalizing
Flows

Work led by Biwel Dal



Weak Lensing of Galaxies

8 Rubin data size:
10° galaxies

large-scale structure : bac'kground.galaxies
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Optimal cosmological data analysis

Optimal: Extract maximum amount of information from the data
Bayesian Inference: MCMC sampling of initial conditions and parameters
Supervised learning with AI/ML to predict posterior p(y|x): discriminative
Learning the likelihood p(x|y) directly with AI/ML: generative

o Con: High dimensionality of x.

©  Model: Normalizing Flows

Use symmetries and
multiscale
architecture to
reduce the curse of
dimensionality

20



Generating training data with N-body simulations

cosmological structure formation: an N-body simulation and a galaxy formation model
A lot of progress in recent years with differentiable fast simulations (FastPM, FlowPM. PWMD.)
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source: http://cosmicweb.uchicago.edu/filaments.html

random initial fluctuations structure formation

random realization is \/

independent from J J logical ¢
cosmological parameters epend on cosmological parameters



Ray-tracing

e multi-lens—plane algorithm from LTsTooIs package
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Stack all the lens planes, add survey mask

HypersupremeCam (HSC) data on Subaru
Later Rubin (LSST) etc.

Real world complications easy to add: survey mask, noise etc.

0 200 400

600 800 1000 1200 1400

We now have realizations of data x

For each simulation we can make many maps by making
different projections

Repeat the process for different values of cosmological
parametersy

y: we can vary initial density amplitude, matter density, dark
energy, neutrino mass etc.



ormalizing Flows
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e Bijective mapping f between data x and latent variable z (z = f(x), z ~ n(z))

o Evaluate density: p(x) = n(f(x)) |det(df/dx)|
o Sample: x = fl(2) (z~n(2))

Credit:
https://lilianwen
g.github.io/lil-lo
9/2018/10/13/fl
ow-based-deep
-generative-mo
dels.html
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Normalizing Flow training

e 1D example

data x NF f latent variable z=f(x)
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How to design Normalizing Flows for physics?

NF by itself requires: Physics applications require:
- Easy evaluation of the inverse - Spatial Structure modeling, high dimensionality
- Easy evaluation of the Jacobian (pixels, voxels): coarse graining, multi-scale
determinant correlations

- Symmetries (translation, rotation etc.)
- Ability to learn from very stochastic data

How do we parametrize our NF, given these considerations?

1) MultiScale Flow (Dai & Seljak 2023)
2) Translational and Rotational Normalizing Flow (Dai & Seljak 2021)

27



Multiscale flow (MSF): a wavelet based flow (pai s seljak, 2023)

Consider a cosmological field with 256 resolution:
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Gaussian
noise

MSF: A fast and accurate simulator of WL maps
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Reliable Uncertainty Quantification with NF posteriors
(generalization: accurate prediction on out of sample data)

e Consistent posteriors from different scales
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Posterior p(y|x)=p(x|y)p(y)/p(x)
prior p(y) is assumed to be flat here

Onsimulated data the errors are properly
calibrated and in agreement with frequentist
notions of error quantification (68/95% of true
simulation values are within 68/95% posterior
contours)
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Robustness — how to identify unknown unknowns (anomalies)?
1) scale dependence of unknown systematic effects on WL maps

Trustworthy Al

e Consistent posteriors from different scales

unknown
0.36 systematic
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e Inconsistent small scale posterior

0.36
0.34
£ 0.32
0.30
0.28

0.750.80.85 0.9

S

&

@&

One of the few ways to identify unknown unknowns!
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Trustworthy Al
2) anomaly detection with density estimation

- 5
Max density estimation max, p(xly)canbe o (08
used for unsupervised anomaly detection: if " os — ot | oa < sumnen
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. . Fig. 5. Top panel: scale-dependent posterior analysis of a baryon-corrected con-
ThlS can be done as a fu nction Of SCa Ie vergence map using Multiscale Flow trained on dark-matter-only maps (left), and
Multiscale Flow trained on BCM maps (right). Bottom panel: ROC curve of identifying
distribution shift with log p (left) and A log p (right). The "small scales" in the lower
left panel represent combining the three small scale terms. In these experiments, we

consider 30arcmin~? galaxy shape noise.

Two independent ways to identify unknown unknowns!



How much better is MSF versus standard power spectrum?

0.85/
$0.80f

0.75}

I Multiscale Flow

traditional analysis
- (power spectrum)

0.74 0.80 0.86
Ss

Example: simulated HSC
or Rubin (LSST) WL data

Two key cosmological
parameters are
amplitude of
fluctuations S, and dark
matter density O

MSF up to 10 x better than
power spectrum

Equivalent to 10x larger
survey! Itis rare to achieve
such improvements solely
from a better analysis

Better than other recent
methods (CNN, scattering
transform)



Future plans

Add complications: intrinsic alignments, baryonic feedback,
redshift uncertainty etc.

Finish the analysis of HSC data: could significantly improve
cosmological parameters

Develop the analysis pipeline for Rubin and Euclid: much larger
area needs much large simulation volumes




Summary

Al for Cosmology:: Al can be used for synthetic data generation (simulations), data
analysis, corrupted data restoration, anomaly detection..

For many physics applications combining generative and discriminative learning is
better than discriminative only, and offers more information (trustworthy Al)

Al for cosmological weak lensing analysis: potential improvements of 10x over
power spectrum in weak lensing

Al for science: every field is different, success is not guaranteed, but there are
many fields where Al has the potential to significantly improve current baselines



