

SMASH

machine learning for science and humanities postdoctoral program

●● Jožef ●● Stefan Institute

REPUBLIC OF SLOVENIA MINISTRY OF THE ENVIRONMENT, CLIMATE AND ENERGY SLOVENIAN ENVIRONMENT AGENCY

ML and animal communication

Prof. Todor GANCHEV, Technical University of Varna, Bulgaria

Co-funded by The European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101081355.

Bio-Sketch

Prof. Todor Ganchev

Dept. of Computer Science and Engineering Technical University of Varna, Bulgaria University Federal Mato Grosso, Brazil (2011-) University of Patras, Greece (2000-2012)

Artificial Intelligence Laboratory http://ailab.tu-varna.bg/ tganchev@tu-varna.bg

Bio-Sketch

Prof. Todor Ganchev

Dept. of Computer Science and Engineering Technical University of Varna, Bulgaria University Federal Mato Grosso, Brazil (2011-) University of Patras, Greece (2000-2012)

Artificial Intelligence Laboratory http://ailab.tu-varna.bg/ <u>tganchev@tu-varna.bg</u>

Leadership

Head of the Artificial Intelligence Lab (2019-now) Vice-Rector of Research at TU-Varna (mandate 2019-2023) Vice-Chair of IEEE Bulgaria Section (mandate 2023-2025)

Research

200+ research papers (2 books, 60+ journal articles) 3300+ citations (<u>H-index = 29</u>) 30+ projects (FP5, FP6, FP7, H2020, COST, LIFE+, InterREG, etc.)

Membership

IEEE Senior Member (2010-) Confederation of Laboratories for AI Research in Europe (CLAIRE) (2018-) The AI Cluster Bulgaria (2022-)

Awards

"2013 Joachim Adis Prize for Interdisciplinary Tropical Ecology" "2023 Varna Prize for Individual Achievements in Technical Science"

Animal Communication
Information Extraction
Computational Bioacoustics
Success Stories

Animal Communication
Information Extraction
Computational Bioacoustics
Success Stories

DALL·E 2024-10-05 10.27.49

Animal Communication
Information Extraction
Computational Bioacoustics
Success Stories

Hypothesis test:

H1: Animal communication is a fascinating field – observations reveal the complexity and diversity of the natural world.

DALL·E 2024-10-05 10.27.49

Animal Communication
Information Extraction
Computational Bioacoustics
Success Stories

Hypothesis test:

H1: Animal communication is a fascinating field – observations reveal the complexity and diversity of the natural world. HD: Well ..., the available data do not support H1.

DALL·E 2024-10-05 10.27.49

Animal Communication

1. Diverse Methods

Animals employ a wide range of methods to communicate:

- Acoustic Emissions: Sounds like Vocalizations (barks, howls, chirps, and songs), Stridulations, Drumming, etc.
- *Body Language:* Postures, gestures, facial expressions, and movements.
- *Chemical Signals:* Pheromones and scents.
- *Visual Signals:* Colors, patterns, and displays.
- *Tactile Signals:* Touch, grooming, and vibrations.

Animal Communication

2. Purposeful

Communication serves various purposes:

- *Social Bonding*: Maintaining group cohesion and cooperation.
- *Reproduction*: Attracting mates and defending territories.
- Food Acquisition: Finding and sharing food resources.
- Avoiding Predators: Warning others of danger.
- *Navigation*: Providing directions and guiding group movement.

Animal Communication

3. Species-Specific: Communication methods are often unique to specific species, reflecting their evolutionary history and ecological needs.

4. Context-Dependent: The meaning of a signal can vary depending on the context, such as the social hierarchy, environmental conditions, or the relationship between the sender and receiver.

5. Evolving: Animal communication is not static; it can evolve in response to changing environmental pressures and social dynamics.

6. Complex: While some forms of animal communication may seem simple, they can involve intricate systems of signals and interpretations.

7. Inter-Species Communication: While most communication occurs within a species, there are examples of inter-species communication, such as symbiotic relationships or predator-prey interactions.

(Animal) Communication

(Animal) Communication

(Animal) Communication BRAIN 0 BRAIN 0 \bigcirc CL) Co-funded by

The European Union

(Animal) Communication BRAIN Ο 5cm Capybara Squirrel BRAIN This Photo by Unknown Author is licensed under <u>CC BY</u> 0 \bigcirc

Co-funded by The European Union **VCH**

postdoctoral progra

machine learning for science and

(Animal) Communication

Behaviour-to-Concepts Translation

=> interpretation (understanding) of multiple sets of (subjective) observations of behaviours in a certain context

Behaviour-to-Concepts Translation

=> interpretation (understanding) of multiple sets of (subjective) observations of behaviours in a certain context

The ML perspective

> resources (datasets), i.e. comprehensive sets of representative observations
 > references (tags, values), i.e. an agreement that specific sets of observations relate to certain intentions or actions
 > predictions (best guess or multiple guesses) based on pre-trained models (or distances), i.e. plausible predictions of categories or values

Behaviour-to-Concepts Translation

=> interpretation (understanding) of multiple sets of (subjective) observations of behaviours in certain context

The ML perspective

resources (datasets), i.e. comprehensive sets of representative observations
 references (tags, values), i.e. an agreement that specific sets of observations relate to certain intentions or actions
 predictions (best guess or multiple guesses) based on pretrained models, i.e. plausible predictions of tags or values

Animal Communication is Multimodal

Audio Emissions

- + Line-of-sight is not mandatory
- + Not dependent on day-night luminosity
- + Produced in various ways
- + Flexible information encoding
- + Universal (sensitivity to acoustic vibrations)
- + Doesn't require collaboration,
- + PAM is OK for now!

Audio vs. Vision, Tactile, Chemical...

- Partial information
- Lower communication range
- Less reliable

Computational Bioacoustics

Computational Bioacoustics

- \checkmark Observation data are recorded and can be verified after many years.
- Reduces subjectivity, i.e. allows independence of the qualification and skills of the observer.
- Automated tools can help improve taxonomic efficiency and could be used to aid taxonomists and para-taxonomists in identifying species during large-scale surveys.
- Automation of species identification can speed up the biodiversity assessment process and improve the efficiency of expert labour.
- Allow long-term monitoring without a human observer, i.e. continuous observation of remote habitats.
- \checkmark Automated technology can be used in difficult-to-access or dangerous areas.

https://wallpapers.com/

Observations

We can apply the Time-frequency decomposition (STDFT) on a 5-sec excerpt

Observations

Annotated Spectrogram

Annotated Spectrogram

Question(s) ?!

Well, this wasn't the correct answer but what is the question?

Problems

One-species detection

Species identification

Multi-label species identification

One-category recognition

One-species recognition

One-category recognition

Multi-species diarization

Localization and tracking of individuals

Sound event type recognition

Query-by-example search

Spectrogram

Regions of Interest

Points of Interest

Points of Interest

Recognition/Identification/Detection

Success Stories

A Traditional Approach

Photo: Characteristic habitat of *Vanellus Chilensis Lampronotus* at the Pantanal wetlands (Brazil). Courtesy of Dr Olaf Jahn PLOS ONE

Computational Bioacoustics

Traditional approaches (when domain knowledge is available)

RESEARCH ARTICLE

Automated Sound Recognition Provides Insights into the Behavioral Ecology of a Tropical Bird

Olaf Jahn^{1,2}*, Todor D. Ganchev^{1,3}, Marinez I. Marques^{1,4}, Karl-L. Schuchmann^{1,2,4,5}

1 National Institute for Science and Technology in Wetlands (INAU), Science without Borders Program, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil, 2 Zoological Research Museum A. Koenig (ZFMK), Bonn, North Rhine-Westphalia, Germany, 3 Department of Computer Science and Engineering, Technical University of Varna, Varna, Varna, Bulgaria, 4 Institute of Biosciences, UFMT, Cuiabá, Mato Grosso, Brazil, 5 University of Bonn, Bonn, North Rhine-Westphalia, Germany

PLOS ONE

Computational Bioacoustics

RESEARCH ARTICLE

Automated Sound Recognition Provides Insights into the Behavioral Ecology of a Tropical Bird

Olaf Jahn^{1,2}*, Todor D. Ganchev^{1,3}, Marinez I. Marques^{1,4}, Karl-L. Schuchmann^{1,2,4,5}

 National Institute for Science and Technology in Wetlands (INAU), Science without Borders Program, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil, 2 Zoological Research Museum A. Koenig (ZFMK), Bonn, North Rhine-Westphalia, Germany, 3 Department of Computer Science and Engineering, Technical University of Varna, Varna, Varna, Bulgaria, 4 Institute of Biosciences, UFMT, Cuiabá, Mato Grosso, Brazil, 5 University of Bonn, Bonn, North Rhine-Westphalia, Germany

- A: The acoustic activity detections on "per hour" basis for the three months of interest (June, July, Aug.);
- B-D: Monthly proportion of detections of acoustic activity when monitoring "per quarter hour" for each month ot interest.

PLOS ONE

Computational Bioacoustics

RESEARCH ARTICLE

Automated Sound Recognition Provides Insights into the Behavioral Ecology of a Tropical Bird

Olaf Jahn^{1,2}*, Todor D. Ganchev^{1,3}, Marinez I. Marques^{1,4}, Karl-L. Schuchmann^{1,2,4,5}

1 National Institute for Science and Technology in Wetlands (INAU), Science without Borders Program, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil, 2 Zoological Research Museum A. Koenig (ZFMK), Bonn, North Rhine-Westphalia, Germany, 3 Department of Computer Science and Engineering, Technical University of Varna, Varna, Varna, Bulgaria, 4 Institute of Biosciences, UFMT, Cuiabá, Mato Grosso, Brazil, 5 University of Bonn, Bonn, North Rhine-Westphalia, Germany

Blue vs red bars = diurnal vs nocturnal activity.

- A = occupancy of territory;
- B = egg-laying;
- C = day 12 of incubation;
- D = earliest date of hatching;
- E = change from downy to juvenile plumage;
- F = acquisition of flight (fledging), and
- G = attainment of independence by juveniles.

BIOACOUSTICS https://doi.org/10.1080/09524622.2024.2309362

Check for updates

Taylor & Francis Taylor & Francis Group

Computational Bioacoustics

CNN-based approaches (larger datasets are required)

The importance of acoustic background modelling in CNN-based detection of the neotropical White-lored Spinetail (Aves, Passeriformes, Furnaridae)

Thiago M. Ventura (D^{a,b}, Todor D. Ganchev (D^{a,c}, Cristian Pérez-Granados (D^{a,d}, Allan G. de Oliveira (D^{a,b}, Gabriel de S. G. Pedroso (D^{a,b}, Marinez I. Marques (D^{a,b,e} and Karl-L. Schuchmann (D^{a,b,e,f,g})

^aNational Institute for Science and Technology in Wetlands (INAU), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; ^bInstitute of Computing, Federal University of Mato Grosso, Cuiabá, Brazil; ^cDepartment of Computer Science and Engineering, Technical University of Varna, Varna, Bulgaria; ^dEcology Department, Alicante University, Alicante, Spain; ^ePost-Graduate Program in Zoology (PPGZOO/UFMT), Federal University of Mato Grosso, Cuiabá, Brazil; ^fVertebrate Department (Ornithology), Zoological Research Museum A. Koenig (ZFMK), Bonn, Germany; ^gFaculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany

9 x 64

Computational Bioacoustics

Purposely developed CNN vs ResNet-152 with transfer learning

		Accuracy (%)				Precision (%)				Recall (%)			
Model	no- BG	BG- Wet	BG- Dry	BG-Wet +Dry	no- BG	BG- Wet	BG- Dry	BG-Wet+ Dry	no- BG	BG- Wet	BG- Dry	BG-Wet +Dry	
Proposed CNN	81.2	76.9	80.2	84.5	40.8	34.7	39.3	48.4	55.4	61.3	58.6	50.4	
ResNet-152	83.7	83.8	49.9	80.0	35.3	25.4	17.2	20.6	9.9	4.1	61.1	11.7	

Check for updates

Taylor & Francis

Taylor & Francis Group

The importance of acoustic background modelling in CNN-based detection of the neotropical White-lored Spinetail (Aves, Passeriformes, Furnaridae)

Thiago M. Ventura (**b**^{a,b}, Todor D. Ganchev (**b**^{a,c}, Cristian Pérez-Granados (**b**^{a,d}, Allan G. de Oliveira (**b**^{a,b}, Gabriel de S. G. Pedroso (**b**^{a,b}, Marinez I. Marques (**b**^{a,b,e}) and Karl-L. Schuchmann (**b**^{a,b,e,f,g})

^aNational Institute for Science and Technology in Wetlands (INAU), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; ^bInstitute of Computing, Federal University of Mato Grosso, Cuiabá, Brazil; ^cDepartment of Computer Science and Engineering, Technical University of Varna, Varna, Bulgaria; ^dEcology Department, Alicante University, Alicante, Spain; ^ePost-Graduate Program in Zoology (PPGZOO/UFMT), Federal University of Mato Grosso, Cuiabá, Brazil; ^fVertebrate Department (Ornithology), Zoological Research Museum A. Koenig (ZFMK), Bonn, Germany; ^gFaculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany

Computational Bioacoustics offers Scalability

The Arbimon project(s) (2006-)

The Arbimon project was conceived and implemented by Prof. M. Aide et al. University of Puerto Rico, USA https://arbimon.org/

The Arbimon project(s) (2006-)

Permanent Station

Water sealed case iPod + Recording App Local network switch (recording device) -----9 🔙 🛛 III III III III II 0 = = 0 20Hz-20kHz Microphone External HDD Small Desktop Power Controller 900MHz Radio/antenna Up to 40Km Pream + voltage regulator Internet (for iPod) 12V 85Ah SLA Battery Q \leftrightarrow 12V 7amp Solar Panel 900MHz Radio/antenna Server (Processing and Storage)

The Arbimon project was conceived and implemented by Prof. M. Aide et al. University of Puerto Rico, USA https://arbimon.org/

Web Page

Base Station

The AmiBio project (2008-2013), EC LIFE+ "Best-of-the-Best"

The AmiBio project (2008-2013), EC LIFE+ "Best-of-the-Best"

Title	Threat type	Timestamp	Alert status	Location Name	Audio information	Description
HYM005-000001	🦈 Fire	12.11.2011 - 14:03	Unconfirmed	Lake Vouliagmeni shore	Link	Temperature: 36 C Wind Speed: 42 km/h
HYM006-000002	🦈 Fire	23.11.2011 - 00:02	Unconfirmed	Lake Vouliagmeni cliff	Link	Test Alert
HYM009-000009	🦈 Fire	28.05.2011 - 11:15 - 13:38	Confirmed	Ergani marble quarry	Link	Fire alert test
HYM010-000003	Motocross race	28.11.2011 - 00:01 - 00:20	Unconfirmed	Mount Efzonas I	Link	Motocross race alert!
HYM011-000013	🚰 Gun shot	22.09.2010 - 16:33 - 18:52	Confirmed	Mount Efzonas II		Interdico esse facilisi dignissim. Nulla valde rusticus metuo macto dolus tum. Quidem brevitas immitto. Camur

Title	Location Name	Station Status	Battery Status	Microphone Status	Battery Level (%)	Memory Capacity (%)	Activity Indicator (dB)	Microphone Gain
HYM005	Lake Vouliagmeni shore	MAINTENANCE NEEDED	non-charging	idle	100	90		0.75
HYM006	Lake Vouliagmeni cliff	MAINTENANCE NEEDED	non-charging	idle	100	90		0.75
HYM007	Xerovrachos cliff	WORKING	non-charging	active	95	10	-7	0.7
HYM008	Heliopolis cliff	WORKING	non-charging	active	95	10	-7	0.7
HYM009	Ergani marble quarry	MAINTENANCE NEEDED	non-charging	idle	100	90		0.75
HYM010	Mount Efzonas I	WORKING	non-charging	active	95	10	-10	0.75

More ?!?!

DE GRUYTER

Todor Dimitrov Ganchev COMPUTATIONAL BIOACOUSTICS

BIODIVERSITY MONITORING AND ASSESSMENT

https://doi.org/10.1515/9781614516316

Artificial Intelligence Laboratory

http://ailab.tu-varna.bg/ tganchev@tu-varna.bg

Thanks!

Part of the work and results reported here were obtained thanks to close collaborations with my dear friends and colleagues from the Co.BRA team at the Federal University Mato Grosso, Cuiaba, Brazil, among which Prof. Dr. Charly Schuchmann, Profa. Marinêz I. Marques, Dr. Olaf Jahn, Assoc. Prof. Allan G. de Oliveira, Assoc. Prof. Thiago M. Ventura, Assist. Prof. Cristian P. Granados and many others.

The AmiBio project was implemented during my work at the Artificial Intelligence Group (part of the Wire Communications Laboratory) at the University of Patras, Greece, in an excellent collaboration with Prof. Ilyas Potamitis, Prof. Iosif Mporas, Dr. Otilia Kocsis and many others.

What do you say?

H1 or H0 ?

Hypothesis test:

H1: Animal communication is a fascinating field – observations reveal the complexity and diversity of the natural world. H0: Well ..., the available data do not support H1.