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The Bayes Theorem
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The Bayes Theorem
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The Bayes Theorem
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The Bayes Theorem

  Likelihood   . Prior

Evidence
Posterior =
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Competing models

p(data|M1)

p(data|θ, M1)     . p(θ|M1)p(θ|data, M1) =

p(data|M2)

p(data|θ, M2)     . p(θ|M2)p(θ|data, M2) =

Does the data favour M1 or M2?
And by how much?
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Competing models

p(data|M1)

p(data|M2)

The Bayes Factor
By what factor does the data 

favour M1 over M2?

B   =

p(data|M1)

p(data|θ, M1)     . p(θ|M1)p(θ|data, M1) =

p(data|M2)

p(data|θ, M2)     . p(θ|M2)p(θ|data, M2) =
Evidence1

Evidence2
     =
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The Evidence

p(data|θ,M) . p(θ|M)
p(data|M)

p(θ|data,M) =
Probability density

i.e., normalized.
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The Evidence

p(data|θ,M) . p(θ|M)
p(data|M)

p(θ|data,M) =

p(data|θ,M) . p(θ|M) dθp(data|M)  =

    Evidence   = Likelihood  .  Prior  dθ

Computing this integral can be quite non-trivial, and often, intractable. 9



State of the art and their shortcomings
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Nested sampling1:
Evidence estimated by iteratively computing the likelihood.

● Computationally intensive likelihood recalculation.

● Slow, CPU calculations, not parallelizable with GPUs.

● Scalability issues for high dimensions
○ Ex: 150 dimensions are computationally prohibitive

State of the art and their shortcomings

1. John Skilling “Nested Sampling,” 10.1063/1.1835238.
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State of the art and their shortcomings

Nested sampling1:
Evidence estimated by iteratively computing the likelihood.

● Computationally intensive likelihood recalculation.

● Slow, CPU calculations, not parallelizable with GPUs.

● Scalability issues for high dimensions

Other techniques:
1. k-nearest neighbours2, Laplace approx. - Less expressive: fails for large non-gaussianity.
2. Normalizing flow-based nested3/Gaussianized bridge4 sampling - Requires likelihood re-calculation

1. John Skilling “Nested Sampling,” 10.1063/1.1835238.
2. A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]
3. Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006
4. Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073 
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State of the art and their shortcomings

Nested sampling1:
Evidence estimated by iteratively computing the likelihood.

● Computationally intensive likelihood recalculation.

● Slow, CPU calculations, not parallelizable with GPUs.

● Scalability issues for high dimensions

Other techniques:
1. k-nearest neighbours2, Laplace approx. - Less expressive: fails for large non-gaussianity.
2. Normalizing flow-based nested3/Gaussianized bridge4 sampling - Requires likelihood re-calculation

Likelihood evaluation can be expensive.
These are pre-computed for MCMC samples in parameter estimation pipelines. 
Why not use it?

Useful to have a fast, scalable, and expressive method that does not require extra 
likelihood evaluations.

1. John Skilling “Nested Sampling,” 10.1063/1.1835238.
2. A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]
3. Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006
4. Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073 
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A normalizing flow
Flows solves for a bijective map b/ the latent Normal distribution and the real non-trivial distribution.

Known latent distribution Target real distribution
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A normalizing flow
Flows solves for a bijective map b/ the latent Normal distribution and the real non-trivial distribution.

Known latent distribution Target real distribution
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A normalizing flow
Flows solves for a bijective map b/ the latent Normal distribution and the real non-trivial distribution.

Flow predictionTarget distribution
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Theory behind floZ

Evidence = normalization constant of likelihood x prior
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Theory behind floZ

Evidence 
Estimation

Distribution

 Likelihood . prior
= Unnormalized posterior 
    probability

floZ 
= Normalized posterior 
    probability

Evidence = normalization constant of likelihood x prior

Evidence 
Ground
Truth
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Expected output: 
Evidence distribution

Ideally a delta function
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Implementation: 
Loss Terms
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Loss Terms
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Implementation: 
Loss Terms
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Implementation: 
Loss Terms

L1

L3a

L2

L3b
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Implementation: 
Loss Scheduling

Solving the four losses simultaneously:
1) Weighted sum of losses.
2) Schedule the losses
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Implementation: 
Loss Scheduling

Solving the four losses simultaneously:
1) Weighted sum of losses.
2) Schedule the losses
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Implementation: 
Dealing with sharp boundaries

27



Implementation: 
Dealing with sharp boundaries
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Distributions for benchmarking

2, 10, 15 dimensions
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Benchmarking w/ StateofTheArt
kNN: k-Nearest Neighbours
NS: Nested Sampling
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Benchmarking w/ StateofTheArt
4 Distributions x  {2,10,15} Dimensions

● Accurate: 

floZ and NS are in good agreement. 
Outperforms kNN

● Scalable: 

15d require no more than 105  samples.

● Rapid
15d results of floZ obtained in ~ 20min on 
an  A100 GPU
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High dimensional scalability

For the same number of samples (105) & model complexity.

* For complex distributions, we need a combination of more 
samples, longer training time, and deeper networks.
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Applications: GW Ringdown
Bayes factor in favor of the presence of the higher 221 overtone in GW150914

Fundamental Mode Fundamental Mode w/ Overtonevs
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Applications: GW Ringdown
Bayes factor in favor of the presence of the higher 221 overtone in GW150914

floZ estimates is compatible with nested sampling within 
their 1σ uncertainties.
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Applications: Pulsar Timing Array
Bayes factor in favor of the presence of Hellings-Downs relation in EPTA data

70 dimensional samples, with 1e5 samples.

Compatible with EPTA within the 1σ. 
Very non-gaussian distribution → Need more samples (ongoing analysis)  

Samples provided by the EPTA collaboration 35



Convergence Test
How do we know that the flow is correct?
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Convergence Test
How do we know that the flow is correct?

μ - σ plot
        Mapping to Latent space should be a gaussian



Applications: GW Ringdown
Bayes factor in favor of the presence of the higher 221 overtone in GW150914

Samples from a nested sampler: 
CPNest 1

1. W. Del Pozzo and J. Veitch, “CPNest: Parallel nested sampling.” Astrophysics source code library, record ascl:2205.021, May, 2022.

Fundamental Mode Fundamental + Overtone
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Applications: GW Ringdown
Bayes factor in favor of the presence of the higher 221 overtone in GW150914
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Alternatives?
Reweighting by fraction of outliers
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