#### floZ

#### Bayes factor from normalizing flows



Rahul Srinivasan, Marco Crisostomi, Roberto Trotta, Enrico Barausse, and Matteo Breschi





1st TEONGRAV international workshop on theory of gravitational waves





$$p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}$$

$$p(A|B, \mathbb{C}) = \frac{p(B|A, \mathbb{C}) \cdot p(A|\mathbb{C})}{p(B|\mathbb{C})}$$

$$p(\theta|\text{data}, M) = \frac{p(\text{data}|\theta, M) \cdot p(\theta|M)}{p(\text{data}|M)}$$

$$Posterior = \frac{Likelihood . Prior}{Evidence}$$

## Competing models

$$p(\theta|\text{data}, M_I) = \frac{p(\text{data}|\theta, M_I) \cdot p(\theta|M_I)}{p(\text{data}|M_I)}$$

Does the data favour  $M_1$  or  $M_2$ ?

And by how much?

$$p(\theta|\text{data}, M_2) = \frac{p(\text{data}|\theta, M_2) \cdot p(\theta|M_2)}{p(\text{data}|M_2)}$$

## Competing models

$$p(\theta|\text{data}, M_I) = \frac{p(\text{data}|\theta, M_I) \cdot p(\theta|M_I)}{p(\text{data}|M_I)}$$

$$p(\theta|\text{data}, M_2) = \frac{p(\text{data}|\theta, M_2) \cdot p(\theta|M_2)}{p(\text{data}|M_2)}$$

#### The Bayes Factor

By what factor does the data favour  $M_1$  over  $M_2$ ?

$$B = \frac{p(\text{data}|M_1)}{p(\text{data}|M_2)}$$

$$= \frac{Evidence_1}{Evidence_2}$$

#### The Evidence

$$p(\theta|\text{data},M) = \frac{p(\text{data}|\theta,M) \cdot p(\theta|M)}{p(\text{data}|M)}$$
Probability density

i.e., normalized.

#### The Evidence

$$p(\theta|\text{data},M) = \frac{p(\text{data}|\theta,M) \cdot p(\theta|M)}{p(\text{data}|M)}$$

$$p(\text{data}|M) = \int p(\text{data}|\theta,M) \cdot p(\theta|M) d\theta$$

$$Evidence = \int Likelihood \cdot Prior \ d\theta$$

Computing this integral can be quite non-trivial, and often, intractable.

#### Nested sampling<sup>1</sup>:

Evidence estimated by iteratively computing the likelihood.

- *Computationally intensive* likelihood *re*calculation.
- *Slow*, CPU calculations, not parallelizable with GPUs.
- *Scalability* issues for high dimensions
  - Ex: 150 dimensions are computationally prohibitive

<sup>1.</sup> John Skilling "Nested Sampling," 10.1063/1.1835238.

#### Nested sampling<sup>1</sup>:

Evidence estimated by iteratively computing the likelihood.

- *Computationally intensive* likelihood *re*calculation.
- *Slow*, CPU calculations, not parallelizable with GPUs.
- *Scalability* issues for high dimensions

#### Other techniques:

- 1. k-nearest neighbours<sup>2</sup>, Laplace approx. *Less expressive*: fails for large non-gaussianity.
- 2. Normalizing flow-based nested<sup>3</sup>/Gaussianized bridge<sup>4</sup> sampling *Requires likelihood re-calculation*

<sup>1.</sup> John Skilling "Nested Sampling," 10.1063/1.1835238.

<sup>2.</sup> A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]

<sup>3.</sup> Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006

<sup>4.</sup> Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073

#### Nested sampling<sup>1</sup>:

Evidence estimated by iteratively computing the likelihood.

Likelihood evaluation can be expensive.

These are pre-computed for MCMC samples in parameter estimation pipelines. Why not use it?

Useful to have a <u>fast</u>, <u>scalable</u>, and <u>expressive</u> method that does not require extra likelihood evaluations.

- 1. k-nearest neighbours<sup>2</sup>, Laplace approx. *Less expressive*: fails for large non-gaussianity.
- 2. Normalizing flow-based nested<sup>3</sup>/Gaussianized bridge<sup>4</sup> sampling *Requires likelihood re-calculation* 
  - 1. John Skilling "Nested Sampling," 10.1063/1.1835238.
  - 2. A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]
  - 3. Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006
  - 4. Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073

## A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.



#### A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.



### A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.



Target distribution 
$$p(x) \mapsto q_{\phi}(x)$$
 Flow prediction  $= n(\mathbf{f}_{\phi}^{-1}(x)) \left| \det \frac{\partial \mathbf{f}_{\phi}^{-1}}{\partial x}(x) \right|$ 

## Theory behind *floZ*

Evidence = normalization constant of likelihood x prior

## Theory behind *floZ*

Evidence = normalization constant of likelihood x prior



# Expected output:

Evidence distribution



Ideally a delta function

Loss Terms

1. Normalizing flow loss:

floZ prediction

floz pro
$$\mathcal{L}_1(oldsymbol{\phi}) = -\mathrm{E}_{\mathrm{p}(oldsymbol{x})} \left[ \log(\mathrm{q}_{oldsymbol{\phi}}(oldsymbol{x})) 
ight]$$

Expectation over posterior samples

Loss Terms

1. Normalizing flow loss:

floZ prediction

$$\mathcal{L}_1(oldsymbol{\phi}) = -\mathrm{E}_{\mathrm{p}(oldsymbol{x})} \left[ \log(\mathrm{q}_{oldsymbol{\phi}}(oldsymbol{x})) 
ight]$$

Expectation over posterior samples

2. Reducing evidence estimation error:

$$\mathcal{L}_2(oldsymbol{\phi}) \simeq \log \sigma_{\mathfrak{h}}$$
 Standard deviation of evidence estimation

Loss Terms

1. Normalizing flow loss:

floZ prediction

$$\mathcal{L}_1(oldsymbol{\phi}) = -\mathrm{E}_{\mathrm{p}(oldsymbol{x})} \left[ \log(\mathrm{q}_{oldsymbol{\phi}}(oldsymbol{x})) 
ight]$$
  
Expectation over posterior sample

Expectation over posterior samples

3. Identity evidence ratio of all pairs of samples: Mean evidence ratio

$$\mathcal{L}_{3a}(oldsymbol{\phi}) \ = \ |\log \mu_{\mathfrak{g}}|$$

2. Reducing evidence estimation error:

$$\mathcal{L}_2(oldsymbol{\phi}) \simeq \log \sigma_{\mathfrak{h}}$$
 Standard deviation of evidence estimation

Loss Terms

1. Normalizing flow loss:

floZ prediction

$$\mathcal{L}_1(oldsymbol{\phi}) = -\mathrm{E}_{\mathrm{p}(oldsymbol{x})} \left[ \log(\mathrm{q}_{oldsymbol{\phi}}(oldsymbol{x})) 
ight]$$

Expectation over posterior samples

3. Identity evidence ratio of all pairs of samples: *Mean evidence ratio* 

$$\mathcal{L}_{3a}(oldsymbol{\phi}) \ = \ |\log \mu_{\mathfrak{g}}|$$

2. Reducing evidence estimation error:

$$\mathcal{L}_2(\phi) \simeq \log \sigma_{\mathfrak{h}}$$
 Standard deviation of evidence estimation

4. Reducing evidence ratio error:

$$\mathcal{L}_{3b}(oldsymbol{\phi}) = \log \sigma_{\mathfrak{g}}$$
  
Standard deviation of the ratio of evidence

#### Loss Terms

1. Normalizing flow loss:

$$\mathcal{L}_1(\phi) = egin{bmatrix} \mathbb{I}_{0} & \mathbb{I}$$

3. Identity evidence ratio of all pairs of samples: *idence ratio* 

$$\mathcal{L}_{3a}(\phi): egin{array}{ccc} oldsymbol{\mathbb{L}}_{3a} \end{array}$$

2. Reducing evidence estimation error:

$$\mathcal{L}_2(\phi) \simeq 1$$
  $egin{array}{c} \mathbf{L}_2 & ext{viation} \ & ext{of evidence estimation} \end{array}$ 

4. Reducing evidence ratio error:

$$\mathcal{L}_{3b}(\phi) = \mathbf{L}_{\mathbf{3b}}$$
Standard deviation of the ratio of evidence

Loss Scheduling

Solving the four losses simultaneously:

- 1) Weighted sum of losses.
- 2) Schedule the losses

Loss Scheduling

Solving the four losses simultaneously:

- 1) Weighted sum of losses.
- 2) Schedule the losses



#### Dealing with sharp boundaries





#### Dealing with sharp boundaries





# Distributions for benchmarking



2, 10, 15 dimensions

#### Benchmarking w/ StateOfTheArt

kNN: k-Nearest Neighbours

**NS**: Nested Sampling



## Benchmarking w/ StateOfTheArt

4 Distributions x {2,10,15} Dimensions



#### • Accurate:

floZ and NS are in good agreement. Outperforms kNN

#### • Scalable:

15d require no more than 10<sup>5</sup> samples.

#### Rapid

15d results of *floZ* obtained in  $\sim$  20min on an A100 GPU

## High dimensional scalability

For the same number of samples  $(10^5)$  & model complexity.

\* For complex distributions, we need a combination of more samples, longer training time, and deeper networks.



### Applications: GW Ringdown

Bayes factor in favor of the presence of the higher 221 overtone in GW150914



VS

#### Fundamental Mode w/ Overtone



# Applications: GW Ringdown

Bayes factor in favor of the presence of the higher 221 overtone in GW150914

floZ estimates is compatible with nested sampling within their  $1\sigma$  uncertainties.



# Applications: Pulsar Timing Array

Bayes factor in favor of the presence of Hellings-Downs relation in EPTA data

70 dimensional samples, with 1e5 samples.

Compatible with EPTA within the  $1\sigma$ .

Very non-gaussian distribution  $\rightarrow$  **Need more samples** (ongoing analysis)



Samples provided by the EPTA collaboration

# Convergence Test

How do we know that the flow is correct?

# Convergence Test

0.9 0.8

How do we know that the flow is correct?



### Applications: GW Ringdown

Bayes factor in favor of the presence of the higher 221 overtone in GW150914



Samples from a nested sampler: CPNest <sup>1</sup>

#### Applications: GW Ringdown

Bayes factor in favor of the presence of the higher 221 overtone in GW150914



#### Alternatives?

#### Reweighting by fraction of outliers

