Detecting faint VHE gamma-ray sources using Deep Neural Networks

the European Union

SLOVENI/

Judit Pérez Romero

judit.perez@ung.si

10/10/2024

THE GAMMA-RAY SKY

THE GAMMA-RAY SKY: BACKGROUNDS

• Different techniques for gamma-ray detection, wide energy range

Imaging Air Cherenkov Telescopes (IACTs)

- Ground-based telescopes
- Detect secondary products from the interaction between the gamma-ray and the atmosphere
- Protons also produce air showers: up to 10⁴ larger than rate of gamma-rays

Irreducible CR background inherent to each IACTs

THE GAMMA-RAY SKY: BACKGROUNDS

10⁻¹⁰

10⁻¹¹

10⁻¹³

10⁻¹⁴

10⁻¹²

10⁻¹⁶

10⁻¹⁵

10⁻¹⁷

• Different techniques for gamma-ray detection, wide energy range

10⁻⁴

10⁻⁵

10⁻⁶

10⁻⁷ 10⁻⁸

10⁻⁹

Imaging Air Cherenkov Telescopes (IACTs)

• Ground-based telescopes

Wavelength

in Metres

Electron Volts (eV) 10²

10

- Detect secondary products from the interaction between the gamma-ray and the atmosphere
- Protons also produce air showers: up to 10⁴ larger than rate of gamma-rays

Irreducible CR background inherent to each IACTs

10⁻¹⁹

10¹⁴

THE GAMMA-RAY SKY: FAINT SOURCES

- These backgrounds hinder the detection of faint gamma-ray sources
- Faint sources enclose a lot of new physics information:

Cosmic ray (CR) production & populations

• Particles in the vicinity of violent phenomena are accelerated:

Galaxy clusters:

- DM dominated
- CR poulations

1st SMASHing Workshop

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

- Future of IACTs for very-high energy gamma-ray astronomy
- 2 arrays: Northern Array (La Palma, Spain) and Southern Array (Paranal, Chile)
- First telescope already in operations!

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

- Use ASID + ASID-L to aid in the detection of faint gamma-ray sources in CTAO data
 - How?
- Extend the reach of ASID to:
 - Simulated (but realistic) CTAO data ۲
 - Detection of **extended** sources ٠
 - Detection of **overlapping** sources

The galactic plane is the perfect environment for test!

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

- Start testing ASID with:
 - Simulated CTAO data
 - Point-like sources

Toy model for the galactic plane sources

SUMMARY AND FUTURE WORK

- CTAO will improve sensitivity of current IACTs ~O(1), boosting the chances for discovery of faint and still undetected sources
- Faint sources hold plenty of interesting physics, from unveiling the fundamental nature of DM to a better understanding of CR acceleration and production mechanism
- Gamma-ray data has to deal with irreducible backgrounds: GDE & IGRB (*Fermi*-LAT) and atmospheric CR BKG (IACTs), obstructing the analysis
- ML (specifically U-NET architecture like ASID) has show its potential to detect point-like sources in (simplified) gamma-ray data, obtaining comparable results as the standard likelihood analyses
- Next step CTAO simulation of the galactic plane
 - Adapt ASID to simplified CTAO data See results at Zoja Rokavec's talk!
 - Explore the potential of the LoG filter to detect extended sources and characterize extensions in realistic CTAO simulations (overlapping sources)
 - Test other possibilities to detect source extension (open discussion!)

from the European Union's

Thanks for your attention!

1st SMASHing Workshop

BACK-UP MATERIAL

DARK MATTER EVIDENCE

Galactic scales

Galaxy cluster scales

Cosmological scales

- Rotational curves
- Velocity dispersion

- Peculiar velocity flows
- Mass tracers (X-rays, Sunyaev–Zeldovich, strong&weak lensing)
- Dynamical systems

- Cosmic Microwave Background (CMB) anisotropies
- Large Scale Structure (LSS)

UNVEILING THE NATURE OF DARK MATTER THROUGH GAMMA-RAYS

- There is a large variety of objects that are heavily dominated by DM
 - High DM density
 - Massive nearby objects
 - Low astrophysical background

GAMMA-RAYS FROM GALAXY CLUSTERS

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M_{\odot}
- Components:
 - Standard Matter Galaxies (3% 5%)
 - Dark Matter (~80%)

- Intra Cluster Medium (15% 17%) (ICM)
- Several in closeby Universe
- Even supposedly stable objects, a lot of activity (magnetic fields, turbulence motions...)

These processes act as acceleration mechanisms for the ICM producing cosmic rays (CRs)

•
$$CR_e + Mag.fields \rightarrow \gamma_{X-rays,radio}$$
 • $CR_p + ICM \rightarrow \pi^0 \rightarrow \gamma \gamma$

GAMMA-RAYS FROM GALAXY CLUSTERS

- Galaxy clusters should shine brightly in the gamma-ray sky
- This search has been going on for over two decades (either from DM or/and CRs), but signal has remained elusive

Reimer+03

Aharonian+08 [HESS Collab.] Ackermann+10 [Fermi-LAT Collab.] Aleksic+10 [MAGIC Collab.] Dugger+10 Colafrancesco+10 Han+12 – Various clusters. hint Ando & Nagai 12 Huana+12 Aleksic+12 [MAGIC Collab.] Arlen+12 [VERITAS Collab.] Nezri+12 Abramowski+12 [HESS Collab.] Cirelli+12 Hektor+12 – Various clusters, 3.6 or Huber+13 Prokhorov & Churazov 14 – Various clusters. $4-5\sigma$ Ackermann+14 [Fermi-LAT Collab.] – Various clusters, 2.40 Griffin+14 Zandanel & Ando 14 Ackermann+15 [Fermi-LAT Collab.] – Virgo cluster, hint Ahnen+16 [MAGIC Collab.] Ackermann+16 [Fermi-LAT Collab.] – Coma cluster, hint Xi+18 – Coma cluster, hint Aleksic+18 [MAGIC Collab.] Lisanti+18 Colavizenzo+19 – Various clusters, 3.5-3.8 a Tan & Colavicenzo 19 Adam+21 – Coma cluster, 4.9-5.80 Thorpe-Morgan+21 di Mauro, JPR + 23 – Various clusters, 2.5-3.0 σ

Galaxy clusters are amongst the most promising examples for detection of faint gamma-ray sources

DM CANDIDATES: WIMPS

- Different DM candidates:
 - Non-baryonic
 - Electrically neutral
 - Non-relativistic & colissionless
 - Long-lived

DM CANDIDATES: WIMPS

Weakly Interacting Massive Particles Different DM candidates: I keV I TeV 10¹⁹ GeV Non-baryonic 10⁻²² eV I GeV ۲ Axion-like Electrically neutral • Non-relativistic & colissionless Fuzzy DM **WIMPs** Sterile neutrinos **PBHs** Long-lived Only interact via weak nuclear force with SM Produced as a thermal relic • Gamma-rays The search for the WIMP W⁻/Z/q This γ -ray emission Annihilation/Decay – Indirect detection ٠ WIMP Dark allows to perform ?? Matter Particles π^+ Collision Direct detection E_{CM}~100GeV ۲ **Indirect DM Searches** $W^+/Z/\overline{q}$ Neutrinos with current telescopes **Production** Colliders detection + a few p/p, d/d Anti-matter

DM-induced gamma-ray flux from an astrophysical object

23

INDIRECT GAMMA-RAY WIMP DM SEARCHES

- DM production at source: *Cirelli+12* (EW corrections)
 - includes electroweak radiation effects, specially important for the flux of γ and e[±] for energies around m_{DM}
 - s-wave non-relativistic DM-DM annihilation/decay
 - annihilation/decay into primary channel + photon radiation of quarks and leptons, as well as photon branching into quark or lepton pairs
 - gamma-ray fluxes only include prompt emission and not the secondary radiation (e.g. Inverse Compton)

• Fit the profiles either:

- Rotational curves (spiral galaxies, dwarf irregular galaxies)
- Velocity dispersion measurements (dSphs)
- Normalize to the measured mass (galaxy clusters) $\longrightarrow M_{\Delta} = \int_{0}^{R_{\Delta}} \rho(r) r^{2} dr d\Omega$

DM MODELLING: SUBSTRUCTURE

- Galaxy clusters are the most massive objects today, large amount of substructure expected
- Inclusion through $ho_{\rm DM}$ using state-of-the-art subhalo models

28

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

MAGIC-I

Future of Imaging Atmospheric Cherenkov Telescopes for VHE gamma-ray astronomy

MAGIC-II

- 2 arrays: Northern Array (La Palma, Spain) and Southern Array (Paranal, Chile)
- First LST already in operations! ۲

LST1

Oct 2018

LST4

Mar 2025

LST3

Aug 2025

LST2

Nov 2025

Courtesy of M. Teshima

CTAO

CTAO PERFORMANCE

CTAO will have superb capabilities for DM γ -ray searches

CTAO DM ANALYSIS ROADMAP

CTAO ANALYSIS CONFIGURATION: TEMPLATE FITTING

 Includes all expected gamma-ray sources: Target + Astrophysical Backgrounds (BKG) + BKG from Instrument Response Function (IRFs)

• Historically used in *Fermi*-LAT analysis and in a recent CTA analysis (*Acharyya+20* [CTA Cons.])

CTAO ANALYSIS CONFIGURATION: TEMPLATE FITTING

 Includes all expected gamma-ray sources: Target + Astrophysical Backgrounds (BKG) + BKG from Instrument Response Function (IRFs)

• Use likelihood ratio test to fit the models to the simulated data:

$$\ln \mathcal{L}(\vec{\theta}|D) = \sum_{i} \tilde{M}_{i}(\vec{\theta}) - d_{i} \ln(\tilde{M}_{i}(\vec{\theta}))$$
Poissonian likelihood for each parameter
$$TS < 25 \longrightarrow \text{ No signal}$$

CTAO PROSPECTS: CR ANALYSIS SUMMARY

TARGET SELECTION

- Most massive and closest clusters will dominate:
- 1 Virgo
- 2 M49
- 3 A0399
- 4 A0401
- 5 A1060 Hydra
- 6 A
3526 Centaurus
- 7 NGC 1399 Fornax
- 8 NGC 4636
- 9 A1656 Coma
- 10 NGC 5813

-0.27

- U-Net produces segmented regions around point sources
- For each input patch there is per-pixel classification (background vs. foreground)
- Label scores: ~1 (for pixels in the region around a point source) and ~0 (otherwise)
- To translate this to positions, apply a clustering algorithm

ASID CONSISTENCY AGAINST GDE-BACKGROUNDS

• Original simulated population on the galactic plane

• We need several realizations (simulations) of the GP

• Extract the physical distributions of the sample

• Original simulated population on the galactic plane

- We need several realizations (simulations) of the GP
- Extract the physical distributions of the sample

• Comparison of original sample vs. one drawn realization from the physical distributions

- Focus on the most crowded region
- Cover through patches: $-30 < l < 30 \deg$ $-2.5 < b < 2.5 \deg$

- Cover the galactic plane through patches
 - $-30 < l < 30 \deg$
 - $-2.5 < b < 2.5 \deg$
- 12 patches per each complete simulation of the galactic plane

512 pix × 512 pix 5.12 deg × 5.12 deg

• Example of one patch

43