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THE GAMMA-RAY SKY

21st SMASHing Workshop

https://fermi.gsfc.nasa.gov/

• Gamma-rays travel in straight lines, 
allowing to determine their origin

• Originated from non-thermal processes 
due to extremely violent phenomena

• Gamma-ray sources:
• Galactic
• Extragalactic
• Exotic (?) 

Cecer                           e

Gamma-rays

GAL-LON (l [deg])

GAL-LAT (b [deg])

https://www.ctao.org/emission-to-discovery/science/

Gamma-ray emission > 1 GeV from 12 years 

Gamma-rays are 
electromagnetic 

radiation > 100 keV

https://fermi.gsfc.nasa.gov/


THE GAMMA-RAY SKY: BACKGROUNDS

https://www.ctao.org/emission-to-discovery/science/
• Different techniques for gamma-ray detection, wide energy range

• Instrument is based on:

Tracker
(e-e+ tracks from the gamma-ray)

Calorimeter

Anti-coincidence detector

Direction
(position)

Energy

Background
rejection
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See Christopher 
Eckner’s talk!

1st SMASHing Workshop

Backgrounds

Space-born telescope: Fermi Large Area Telescope (LAT)

https://www.ctao.org/emission-to-discovery/science/


THE GAMMA-RAY SKY: BACKGROUNDS
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https://www.ctao.org/emission-to-discovery/science/

• Ground-based telescopes

• Detect secondary products from the interaction 
between the gamma-ray and the atmosphere

• Protons also produce air showers: up to 104 larger 
than rate of gamma-rays

• Different techniques for gamma-ray detection, wide energy range

Credit: CTAO/ESO

Irreducible CR background 
inherent to each IACTs

Imaging Air Cherenkov Telescopes (IACTs)

1st SMASHing Workshop

https://www.ctao.org/emission-to-discovery/science/


THE GAMMA-RAY SKY: BACKGROUNDS
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https://www.ctao.org/emission-to-discovery/science/

• Ground-based telescopes

• Detect secondary products from the interaction 
between the gamma-ray and the atmosphere

• Protons also produce air showers: up to 104 larger 
than rate of gamma-rays

• Different techniques for gamma-ray detection, wide energy range

Irreducible CR background 
inherent to each IACTs

Imaging Air Cherenkov Telescopes (IACTs)

https://docs.gammapy.org/1.2/tutorials/data/cta.html

1st SMASHing Workshop

https://www.ctao.org/emission-to-discovery/science/
https://docs.gammapy.org/1.2/tutorials/data/cta.html
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THE GAMMA-RAY SKY: FAINT SOURCES

• These backgrounds hinder the detection of faint gamma-ray sources
• Faint sources enclose a lot of new physics information:

Pieri+09
Dark Matter (DM)

Gamma-rays
DM particles Standard 

matter
??

Cosmic ray (CR) production & populations

• Particles in the vicinity of violent phenomena are accelerated:

Inverse Compton (IC)

𝛾

𝛾

NGC 1275 in Perseus Galaxy Cluster

Chandra: 
NASA/CXC/SAO/Bulbul+14; XMM: 
ESA

Galaxy clusters:
• DM dominated
• CR poulations

1st SMASHing Workshop
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1. Use Machine Learning (ML) techniques to improve the efficiency of the 
analysis and fully exploit the data

2. Use the most complete and state-of-the-art datasets

7

hgbignkjjnbkhkuh

Fermi-LAT

Cherenkov Telescope 
Array Observatory  (CTAO)

1st SMASHing Workshop

ML TO DETECT FAINT GAMMA-RAY SOURCES

Long-term problem for robustly detect faint sources 
(lower the detection threshold)



ML TO DETECT FAINT GAMMA-RAY SOURCES

• Standard gamma-ray analysis:
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!
Lack of knowledge of backgrounds 

can introduce strong biases

• CNN pipeline based on U-Net 
algorithms 

• Goal: detect and classify point-like 
sources

1. Detection: U-NET + clustering 
algorithm (k-means, Centroid-NET)

2. Classification: deep NN to classify 
different sources (from energy 
features)

https://www.nikhef.nl/%7EEscaron/autosourceid/

AutoSourceID (ASID) [Panes+21]

1st SMASHing Workshop

Training & test: mock Fermi-LAT data

10 deg x 10 deg

E > 1 GeV

Models for the signal + background Likelihood fitting

https://www.nikhef.nl/~Escaron/autosourceid/
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ML TO DETECT FAINT GAMMA-RAY SOURCES

https://github.com/FiorenSt/AutoSourceID-Light

AutoSourceID-Light (ASID-L) [Stoppa+22]

ASID enhanced with a Laplacian of Gaussian 
filter applied to optical data

Detection (flux)

Completness =
True positives

True positive + False negatives

Localization

1st SMASHing Workshop

[Panes+21]

https://github.com/FiorenSt/AutoSourceID-Light


ML TO DETECT FAINT GAMMA-RAY SOURCES

101st SMASHing Workshop

Real Fermi-LAT data

PRELIMINARY

https://www.nikhef.nl/%7EEscaron/autosourceid/

AutoSourceID (ASID) [Panes+21]

Current ASID work in progress! Flux prediction

PRELIMINARYCourtesy of S. Bhattacharyya

https://www.nikhef.nl/~Escaron/autosourceid/


Sensitivity

• Future of IACTs for very-high energy gamma-ray astronomy
• 2 arrays: Northern Array (La Palma, Spain) and Southern Array (Paranal, Chile)
• First telescope already in operations!

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

1st SMASHing Workshop 11
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Preliminary Performance Capabilities of the Alpha Configuration

https://www.ctao.org/for-scientists/performance/
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• Use ASID + ASID-L to aid in the detection of faint gamma-ray sources in CTAO data

How?

• Extend the reach of ASID to:

• Simulated (but realistic) CTAO data

• Detection of extended sources

• Detection of overlapping sources

[CTAO Cons. 23]

The galactic plane is the perfect environment for test!

1st SMASHing Workshop

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO
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• Start testing ASID with:

• Simulated CTAO data

• Point-like sources
Toy model for the galactic plane sources

1st SMASHing Workshop

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

PRELIMINARYPRELIMINARY

PRELIMINARY



SUMMARY AND FUTURE WORK

141st SMASHing Workshop

• CTAO will improve sensitivity of current IACTs ~O(1), boosting the chances for discovery of faint and still 
undetected sources 

• Faint sources hold plenty of interesting physics, from unveiling the fundamental nature of DM to a better 
understanding of CR acceleration and production mechanism

• Gamma-ray data has to deal with irreducible backgrounds: GDE & IGRB (Fermi-LAT) and atmospheric CR BKG 
(IACTs), obstructing the analysis

• ML (specifically U-NET architecture like ASID) has show its potential to detect point-like sources in (simplified) 
gamma-ray data, obtaining comparable results as the standard likelihood analyses

• Next step             CTAO simulation of the galactic plane

• Adapt ASID to simplified CTAO data             See results at Zoja Rokavec’s talk!
• Explore the potential of the LoG filter to detect extended sources and characterize extensions in realistic 

CTAO simulations (overlapping sources)
• Test other possibilities to detect source extension (open discussion!)



Thanks for your attention!

1st SMASHing Workshop



BACK-UP MATERIAL
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• Cosmic Microwave Background 
(CMB) anisotropies

Galactic scales

• Velocity dispersion

Galaxy cluster scales

• Rotational curves • Peculiar velocity flows
• Mass tracers (X-rays, 

Sunyaev–Zeldovich, 
strong&weak lensing)

• Dynamical systems

[Bergstrom 00] [Clowe+06]

Cosmological scales

[Planck Website]

• Large Scale Structure (LSS)

17

DARK MATTER EVIDENCE



Galactic Center

Dark satellites

Dwarf satellites

Milky Way Halo

Nearby galaxies

Galaxy Clusters

• There is a large variety of objects that are heavily dominated by DM

• High DM density

• Massive nearby objects 

• Low astrophysical background

[Pieri+09]

18

UNVEIL ING THE NATURE OF DARK MATTER THROUGH GAMMA-RAYS



• Largest gravitationally bound structures formed by gravitational collapse

• Masses of order ~1014-1015 M⊙

• Components: 

• Standard Matter
• Dark Matter (~80%)

• Several in closeby Universe  

GAMMA-RAYS FROM GALAXY CLUSTERS

19

• Galaxies (3% - 5%)
• Intra Cluster Medium (15% - 17%)

• Even supposedly stable objects, a lot of activity (magnetic fields, 
turbulence motions…)

These processes act as acceleration mechanisms for 
the ICM producing cosmic rays (CRs)

(ICM)

••

IllustrisTNG simulation – TNG100-1, https://www.tng-project.org/

Dark matter density + shock finder

Galaxy cluster



Reimer+03

Aharonian+08 [HESS Collab.]
Ackermann+10 [Fermi-LAT Collab.]
Aleksic+10 [MAGIC Collab.]
Dugger+10
Colafrancesco+10

Han+12 – Various clusters, hint
Ando & Nagai 12
Huang+12
Aleksic+12 [MAGIC Collab.]
Arlen+12 [VERITAS Collab.]

Nezri+12
Abramowski+12 [HESS Collab.]
Cirelli+12
Hektor+12 – Various clusters, 3.6𝜎
Huber+13

Prokhorov & Churazov 14 – Various clusters, 4-5𝜎
Ackermann+14 [Fermi-LAT Collab.] – Various clusters, 2.4𝜎
Griffin+14
Zandanel & Ando 14
Ackermann+15 [Fermi-LAT Collab.] – Virgo cluster, hint

Ahnen+16 [MAGIC Collab.]
Ackermann+16 [Fermi-LAT Collab.] – Coma cluster, hint
Xi+18 – Coma cluster, hint
Aleksic+18 [MAGIC Collab.]
Lisanti+18

Colavizenzo+19 – Various clusters, 3.5-3.8𝜎
Tan & Colavicenzo 19
Adam+21 – Coma cluster, 4.9-5.8𝜎
Thorpe-Morgan+21
di Mauro, JPR + 23 – Various clusters, 2.5-3.0𝜎

GAMMA-RAYS FROM GALAXY CLUSTERS

20

Galaxy clusters are amongst the most promising examples for 
detection of faint gamma-ray sources

• Galaxy clusters should shine brightly in the gamma-ray sky
• This search has been going on for over two decades (either from DM or/and CRs), but signal has remained elusive

Data Res. w/o cluster Res. w/ cluster 

[Adam+21] – Fermi-LAT data of the Coma cluster Hints of signal



DM CANDIDATES: WIMPS

• Only interact via weak nuclear force with SM
• Produced as a thermal relic

Freeze-out

WIMP miracle

Weakly Interacting Massive Particles• Different DM candidates:

• Non-baryonic

• Electrically neutral

• Non-relativistic & colissionless

• Long-lived

21



DM CANDIDATES: WIMPS

• Only interact via weak nuclear force with SM
• Produced as a thermal relic

Weakly Interacting Massive Particles• Different DM candidates:

• Non-baryonic

• Electrically neutral

• Non-relativistic & colissionless

• Long-lived

• Annihilation/Decay

• Collision

• Production

Indirect detection

Direct detection

Colliders detection

• The search for the WIMP

This 𝜸-ray emission 
allows to perform 

Indirect DM Searches 
with current telescopes

22



Astrophysical factor

Annihilation

• DM-induced gamma-ray flux from an astrophysical object

Particle 
Physics Model

[Cirelli+12] 
(EW corrections)

• DM mass
• Interaction 

channel

INDIRECT GAMMA-RAY WIMP DM SEARCHES

Decay

23



• DM production at source: Cirelli+12 (EW corrections)

• includes electroweak radiation effects, specially important for the flux of γ and e± for energies around mDM

• s-wave non-relativistic DM-DM annihilation/decay

• annihilation/decay into primary channel + photon radiation of quarks and leptons, as well as photon branching into quark or lepton 
pairs

• gamma-ray fluxes only include prompt emission and not the secondary radiation (e.g. Inverse Compton)

24

gamma-ray 
prompt emission

Cirelli+12

INDIRECT GAMMA-RAY WIMP DM SEARCHES



DM density profile

Astrophysical factor

Annihilation

• DM-induced gamma-ray flux from an astrophysical object

Particle 
Physics Model

[Cirelli+12]
(EW corrections)

Quantifies the 
significance of the 

signal

INDIRECT GAMMA-RAY WIMP DM SEARCHES

Decay

25



MAIN UNCERTAINTY OF DM DENSITY PROFILES

• To model the DM density profile in the objects, we split the contributions:

Subhalo population (if any)

Main halo

• Cuspy-like, 
from N-body simulations

• Cored-like, 
phenomenologically motivated

• Fit the profiles either:
• Rotational curves (spiral galaxies, dwarf irregular galaxies)
• Velocity dispersion measurements (dSphs)
• Normalize to the measured mass (galaxy clusters)

26



Astrophysical 
ModelDM Annihilation

• Galaxy clusters are the most massive objects today, large amount of substructure expected

• Inclusion through 𝜌DM using state-of-the-art subhalo models

DM MODELLING: SUBSTRUCTURE

DM subhalo profile: NFW

Subhalo Radial Distribution 
(SRD)

Subhalo Mass Function 
(SHMF)

Via Lactea - II
Anti-biased relation

[Diemand+08]

Subhalo Concentration-Mass relation 
(c200-M200)

[Moliné+17]

Dependence on 
the subhalo

position𝛼 = 1.9  

[Springel+08]

𝛼 = 2.0  

[Diemand+08]

27



https://www.cta-observatory.org/

LSTMST

150 GeV - 5 TeV 20 - 150 GeV

DØ = 11.5m DØ = 23m

Energy range

20 GeV - 300 TeV

https://www.cta-observatory.org/project/technology/

28

• Future of Imaging Atmospheric Cherenkov Telescopes for VHE gamma-ray astronomy
• 2 arrays: Northern Array (La Palma, Spain) and Southern Array (Paranal, Chile)
• First LST already in operations!

SST

5 - 300 TeV

DØ = 4.3m

ML TO DETECT FAINT GAMMA-RAY SOURCES: CTAO

CTAO North 30 Aug. 2024

Courtesy of M. Teshima

https://www.cta-observatory.org/
https://www.cta-observatory.org/project/technology/


CTAO PERFORMANCE

Angular resolution

CTAO  will have superb capabilities for DM 𝛾-ray searches
29

Sensitivity

https://www.ctao.org/for-scientists/performance/

Preliminary Performance Capabilities of the Alpha Configuration

https://www.ctao.org/for-scientists/performance/


Total DM-induced 𝜸-rays

CTA IRFs

Constraints on DM models

Observation 
Simulation

Total CR-induced 𝜸-rays 𝜸-rays from AGNs

Aeff

BKG

Edisp

Use as BKG Use as BKGOur signal

If no signal

found

• Gamma-ray sources in a 
standard galaxy cluster:

https://www.cta-
observatory.org/science/ctao-

performance/

30

CTAO DM ANALYSIS ROADMAP

(Perseus cluster)

https://www.cta-observatory.org/science/ctao-performance/
https://www.cta-observatory.org/science/ctao-performance/
https://www.cta-observatory.org/science/ctao-performance/


• Includes all expected gamma-ray sources: Target + Astrophysical Backgrounds (BKG) + BKG from Instrument Response 
Function (IRFs)

• Considers the different morphologies of each emission

• Allows to check correlations between components

• Historically used in Fermi-LAT analysis and in a recent CTA analysis (Acharyya+20 [CTA Cons.])

Most realistic physical 
scenario

State-of-the-art analysis 
pipeline

BKG 
astrophysical 

emission

BKGTarget 
emission [from IRFs]

CTAO ANALYSIS CONFIGURATION: TEMPLATE FITTING

31

BKG 
astrophysical 

emission



• Includes all expected gamma-ray sources: Target + Astrophysical Backgrounds (BKG) + 
BKG from Instrument Response Function (IRFs)

• Use likelihood ratio test to fit the models to the simulated data:

• TS < 25 No signal

Poissonian likelihood for each parameter

CTAO ANALYSIS CONFIGURATION: TEMPLATE FITTING

32

Most realistic physical 
scenario

BKG 
astrophysical 

emission

BKGTarget 
emission [from IRFs]

BKG 
astrophysical 

emission



C HA RA CT ER IS TI CS  O F S IM ULATI ON S O F C LUST ER ’S  G AM MA-R AY  EM IS S IO N

• Input models:

DM Annihilation (thermal cross-section)
DM Decay (𝜏𝜒 = 1027s)

m𝜒 = 10 TeV
bƃ

CR baseline model

NGC1275
&

IC310

EBL
Domínguez+11

33



CTAO PROSPECTS: CR ANALYSIS SUMMARY

• Joint-fit of the overall sky model simultaneously

34

TS~42

Prospects for gamma-ray observations of the Perseus galaxy cluster with the 
Cherenkov Telescope Array

The CTAO Consortium (corresponding authors - alphabetical: R. Adam, M. Hütten, 

JPR, M. A. Sánchez-Conde, S. Hernández Cadena)

JCAP10(2024)004, [arXiv:2309.03712]

https://arxiv.org/abs/2309.03712


• Selection criteria:

TARGET SELECTION

• Fermi-LAT does not have constraints on observation time Sample of best clusters for DM searches

• Well-known M200  from X-rays measurements

• Local clusters

• Mask of |b| < 20 deg to avoid galactic diffuse emission 
• Separation of at least 2 deg to account for cluster extension

HIFLUGCS catalogue (Reiprich&Böhringer02)
Masses from Schellenberger&Reiprich17 

(X-rays data from Chandra)

z < 0.1

Sample of 49 local 
galaxy clusters

• Clusters used in previous searches:

Ackermann+10 [Fermi-LAT Coll.]

Ackermann+14 [Fermi-LAT Coll.]

Sánchez-Conde+11

• 50 local clusters
• fx ≥ 1.7·10-11 erg s-1 cm-2

• biased towards cool-cored clusters (Käfer+19)

35

Constraining the dark matter contribution of gamma-rays in cluster of galaxies using Fermi-LAT data

M. di Mauro, JPR, M. A. Sánchez-Conde, N. Fornengo

Phys. Rev. D 107, 083030, [arXiv:2303.16930]

https://arxiv.org/abs/2303.16930


TARGET SELECTION

• Most massive and closest clusters will dominate:

36



ASID  METHOD OLY  FOR DETECTION OF POINT-LIK E SOURCES

ML tool to directly analyse gamma-ray image datasets

AutoSourceID (ASID) [Panes+21]

37

• Convolutional Neural Network (CNN) pipeline 
based on U-Net algorithms 

• Goal: detect (localize) point-like sources

U-NET scheme

Semantic segmentation

• U-Net produces segmented regions around point sources

• For each input patch there is per-pixel classification (background vs. foreground)

• Label scores: ~1 (for pixels in the region around a point source) and ~0 (otherwise)

• To translate this to positions, apply a clustering algorithm

https://www.nikhef.nl/~scaron/autosourceid/

https://www.nikhef.nl/~scaron/autosourceid/


ASID  CONSISTENCY AGAINST GDE-BACKGROUNDS

38



CTAO GALACTIC PLANE SIMULATION

39

• Extract the physical distributions of the sample

• Original simulated population on the galactic plane • We need several realizations (simulations) of the GP  

[CTAO Cons. 23]

PRELIMINARY



CTAO GALACTIC PLANE SIMULATION

• Original simulated population on the galactic plane

40

[CTAO Cons. 23]

• We need several realizations (simulations) of the GP  

• Extract the physical distributions of the sample



CTAO GALACTIC PLANE SIMULATION

41

• Comparison of original sample vs. one drawn realization from the physical distributions

[CTAO Cons. 23]

PRELIMINARY



CTAO GALACTIC PLANE SIMULATION

42

• Focus on the most crowded region
• Cover through patches:

One realization of the galactic plane

−30 < 𝑙 < 30 deg −2.5 < 𝑏 < 2.5 deg

[CTAO Cons. 23]

PRELIMINARY



CTAO GALACTIC PLANE SIMULATION

43

• Cover the galactic plane 
through patches

• Example of one patch

Total photons

Background photons

−30 < 𝑙 < 30 deg

−2.5 < 𝑏 < 2.5 deg

• 12 patches per each 
complete simulation of 
the galactic plane

512 pix ×  512 pix

5.12 deg ×  5.12 deg

[Donath et al. 2023]

PRELIMINARY
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