

Testing gravity with cosmology

Emilio Bellini

08th October 2024

1st Smashing Workshop

The standard cosmological model (\(\Lambda CDM\))

$$\underbrace{\mathsf{GR} + \Lambda + \mathsf{CDM} + \mathsf{SM}}_{\mathsf{Gravity}}$$

The standard cosmological model (ACDM)

Gravity

Ingredients

- 96% unknown!
- ullet Λ : accelerating universe
- CDM: more matter than observed
- **SM**: standard model particles

Expansion history

Cosmic Microwave Background

- Λ explains accelerated expansion but too small $(\rho_{\Lambda}/\rho_{\nu} \sim 10^{-120})$
- ACDM fits well each dataset, but tensions when combining them
- Tests of GR on local scales, but cosmology is 10¹⁵ larger

- Λ explains accelerated expansion but too small $(
 ho_{\Lambda}/
 ho_{
 u}\sim 10^{-120})$
- ACDM fits well each dataset, but tensions when combining them
- Tests of GR on local scales, but cosmology is 10¹⁵ larger

In Physics we have Heroes, not Prophets - S. Weinberg

Scales in cosmology::

- large scales: $\mbox{small perturbations}$ around it (easy)
- small scales: large perturbations (difficult)

Scales in cosmology::

- largest observable scales: homogeneous and isotropic universe
- large scales: small perturbations around it (easy)
- small scales: large perturbations (difficult)

Scales in cosmology::

- largest observable scales: homogeneous and isotropic universe
- large scales: small perturbations around it (easy)
- small scales: large perturbations (difficult)

- ullet increased accuracy of data o better theory modeling
- ullet different gravity o different modeling

Scales in cosmology::

- largest observable scales: homogeneous and isotropic universe
- large scales: small perturbations around it (easy)
- small scales: large perturbations (difficult)

The linear universe

[Zumalacàrregui, EB, et al. (2017)] [EB, Sawicki, Zumalacàrregui (2020)]

```
hi_class

higher the class

hi
```

www.hiclass-code.net

The linear universe

Results

- No significant evidence of MG (2σ , mostly low-l in the CMB)
- kineticity $(\alpha_{\rm K})$ unconstrained
- Current data: $\mathcal{O}(1)$ constraints
- Next generation: $\mathcal{O}(0.1)$ constraints

[Zumalacàrregui, EB, *et al.* (2017)] [EB, Sawicki,Zumalacàrregui (2020)]

www.hiclass-code.net

- 3D structures evolving in time
- not interested in full distribution, but on statistical properties
- data from highly non-linear scales (very small scales)

- 3D structures evolving in time
- not interested in full distribution, but on statistical properties
- data from highly non-linear scales (very small scales)

Tools:

- Einstein-Boltzmann solvers, e.g. hi_class. Large scales, few seconds
- N-body simulations. Very accurate on small scales. Hours, days
- Fitting formulas from N-body simulations. Model dependent

Testing gravity can be slow!

Testing gravity can be slow!

Emulating the Large-Scale Structure

- ullet with Machine Learning easily speed up by a factor $\sim 10^2$ w.r.t. standard pipelines
- start with Feed Forward Neural Networks, and improve if needed
- start with toy model to better control the pipeline, and add more models later
- use hi_class and N-body simulations to train the emulator

Testing gravity can be slow!

Emulating the Large-Scale Structure

- with Machine Learning easily speed up by a factor $\sim 10^2$ w.r.t. standard pipelines
- start with Feed Forward Neural Networks, and improve if needed
- start with toy model to better control the pipeline, and add more models later
- use hi_class and N-body simulations to train the emulator

Vera Rubin Observatory (SMASH research line)

- Most of the effort for ACDM!
- Work within "Beyond wCDM" topical team
- Integrate my emulator in their pipeline

Build the emulator

- Use general approaches to study gravity
- start with simple models and add more models later for risk mitigation
- use standard Machine Learning techniques, and later improve with more sophisticated algorithms

Build the emulator

- Use general approaches to study gravity
- start with simple models and add more models later for risk mitigation
- use standard Machine Learning techniques, and later improve with more sophisticated algorithms

Integrate it into the standard V. Rubin observatory pipeline

- ensure compatibility with their pipeline
- ready to use and easy to upgrade incrementally

Build the emulator

- Use general approaches to study gravity
- start with simple models and add more models later for risk mitigation
- use standard Machine Learning techniques, and later improve with more sophisticated algorithms

Integrate it into the standard V. Rubin observatory pipeline

- ensure compatibility with their pipeline
- ready to use and easy to upgrade incrementally

Parameter space exploration

- explore the phenomenology of different models
- get the state of the art constraints on those model with current data
- forecast for the sensitivity of the V. Rubin Observatory

Build the emulator

- Use general approaches to study gravity
- start with simple models and add more models later for risk mitigation
- use standard Machine Learning techniques, and later improve with more sophisticated algorithms

Integrate it into the standard V. Rubin observatory pipeline

- ensure compatibility with their pipeline
- ready to use and easy to upgrade incrementally

Parameter space exploration

- explore the phenomenology of different models
- get the state of the art constraints on those model with current data
- forecast for the sensitivity of the V. Rubin Observatory

Thank you!