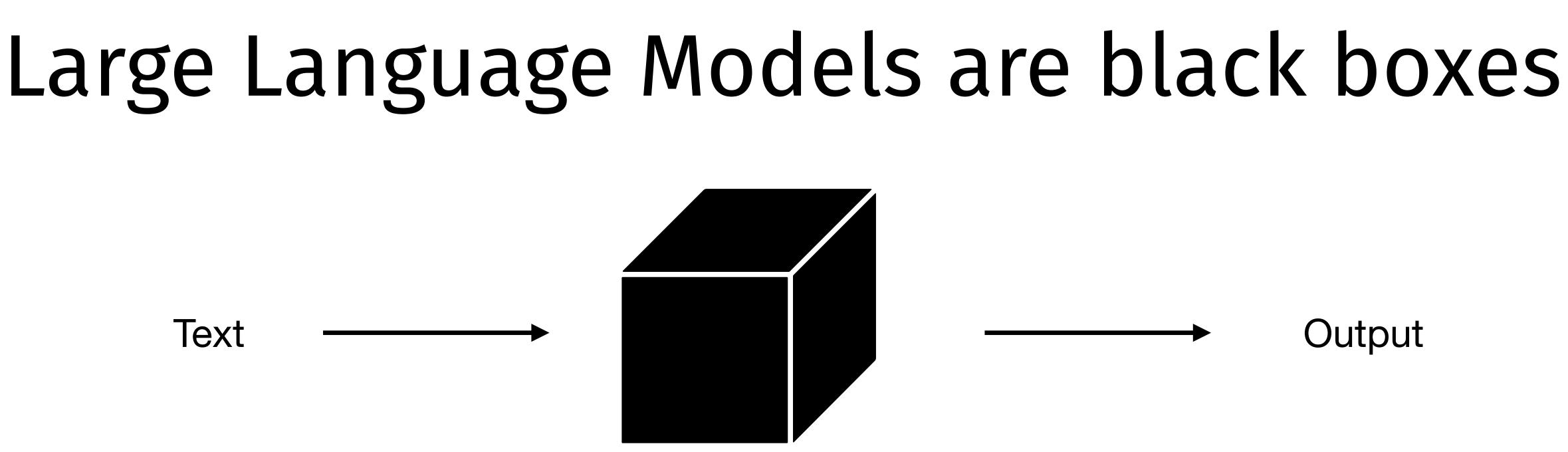
Persistent Topological Features in Large Language Models

Matteo Biagetti

With Yuri Gardinazzi, Giada Panerai, Karthik Viswanathan, Alberto Cazzaniga (arXiv:2410.XXXX)

1st SMASHING Workshop - 9th October 2024



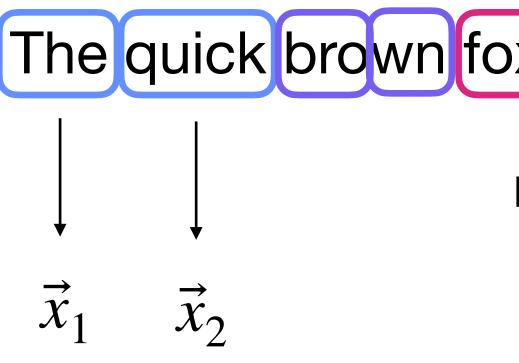
Problem: black box system with $\mathcal{O}(10^9)$ tuned parameters. Not really possible to

- Understand what goes on inside
- 2. Evaluate incorrect or unsafe behaviour
- 3. Optimize inefficiency in a systematic way

Given the widespread applications, we need to understand the **decision-making** process

The quick brown fox jumps over the lazy dog

input

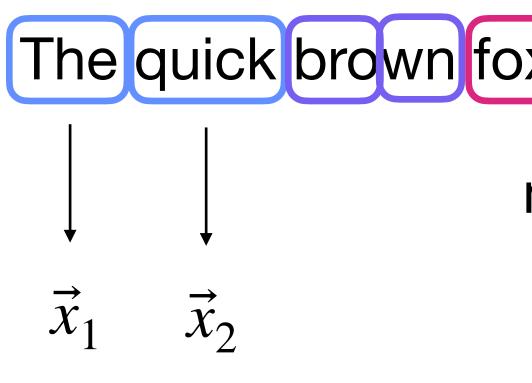


Each input: $\vec{x}_i \in \mathbb{R}^d$ token Sequence $\{\vec{x}_1, \dots, \vec{x}_N\}$ prompt input

The quick brown fox jumps over the lazy dog

 \vec{x}_N

map into \mathbb{R}^d



Each input: $\vec{x}_i \in \mathbb{R}^d$ token Sequence $\{\vec{x}_1, \ldots, \vec{x}_N\}$ prompt input

The quick brown fox jumps over the lazy dog map into \mathbb{R}^d

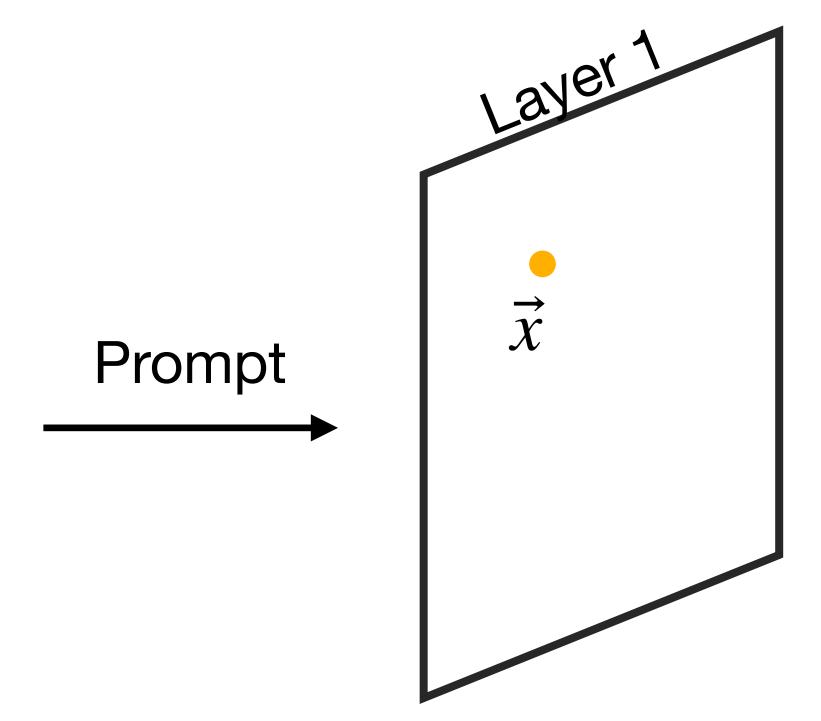
Task: predict next token

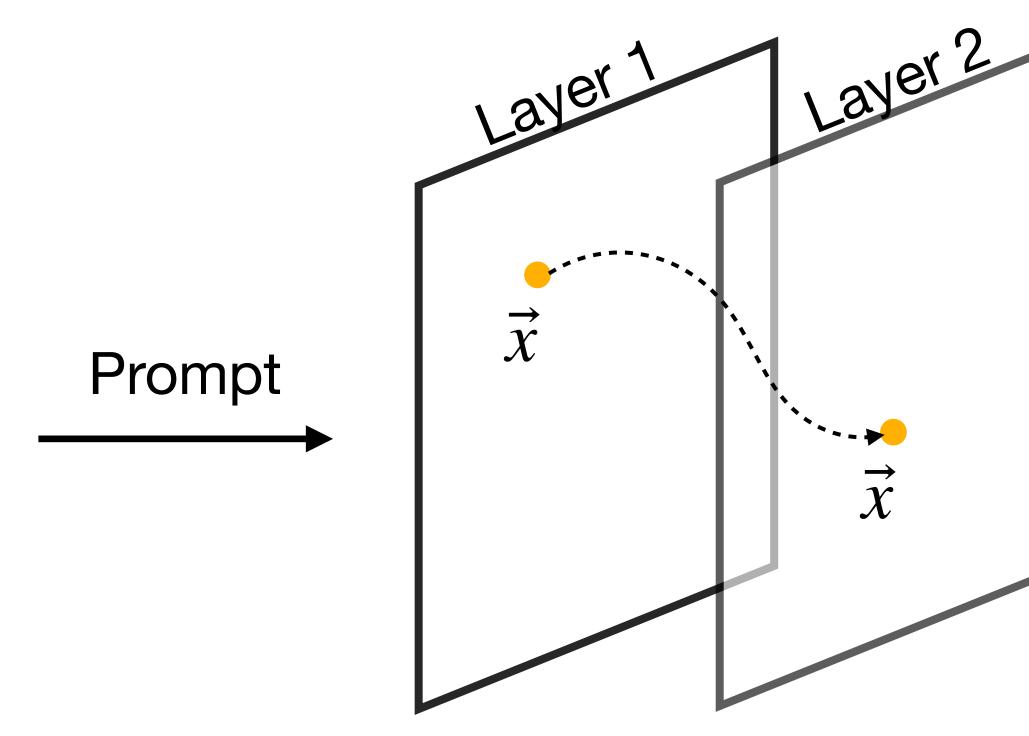
 $d \approx \mathcal{O}(10^3)$

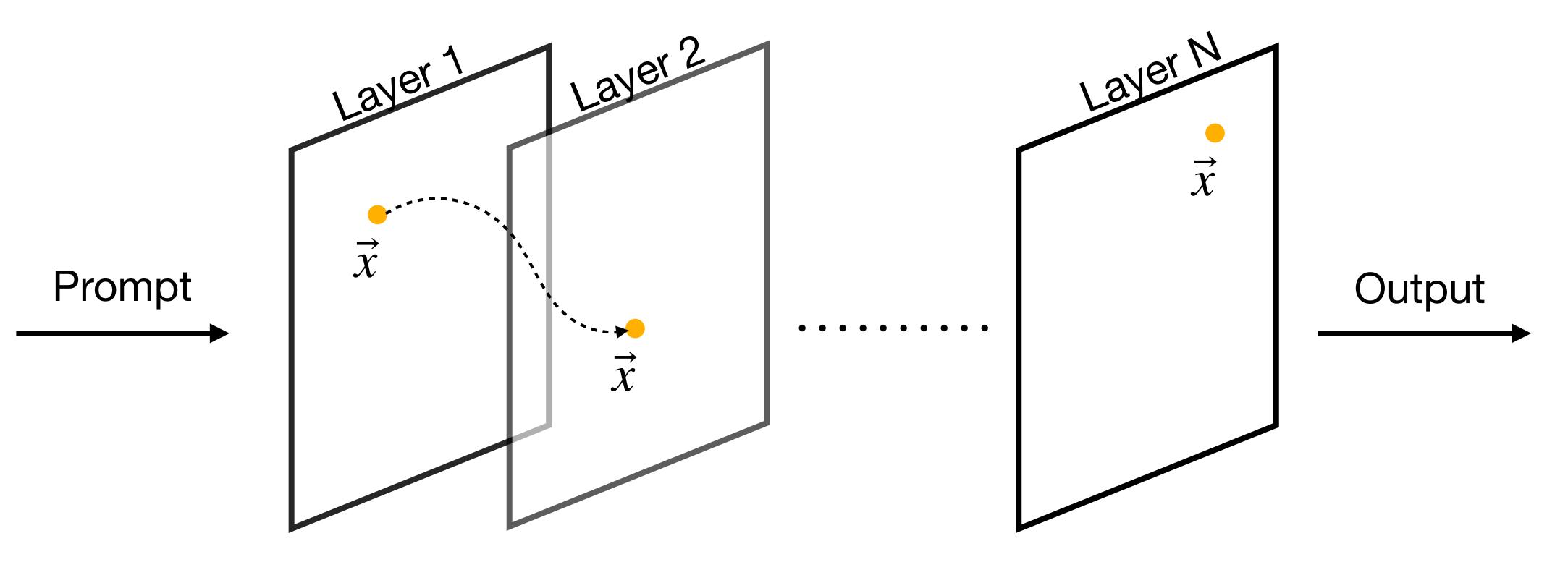
$$\vec{x}_N \equiv \vec{x}$$
 Last token

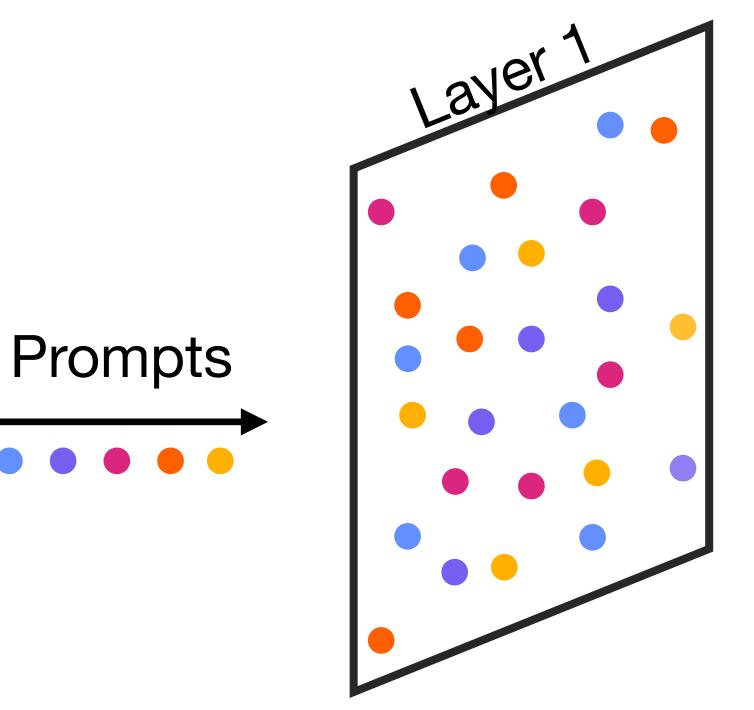
 \vec{x}_N

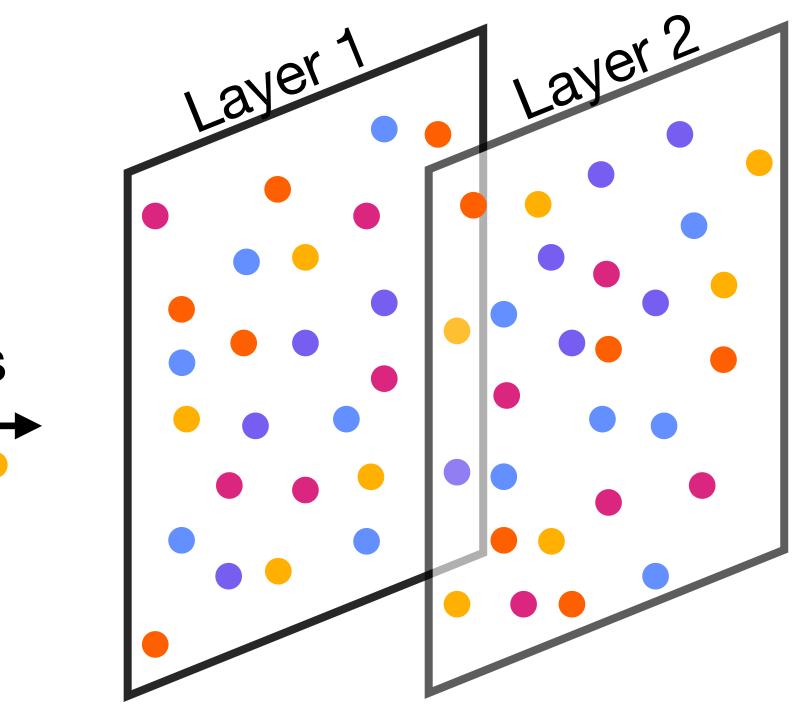
It contains most information on whole sequence



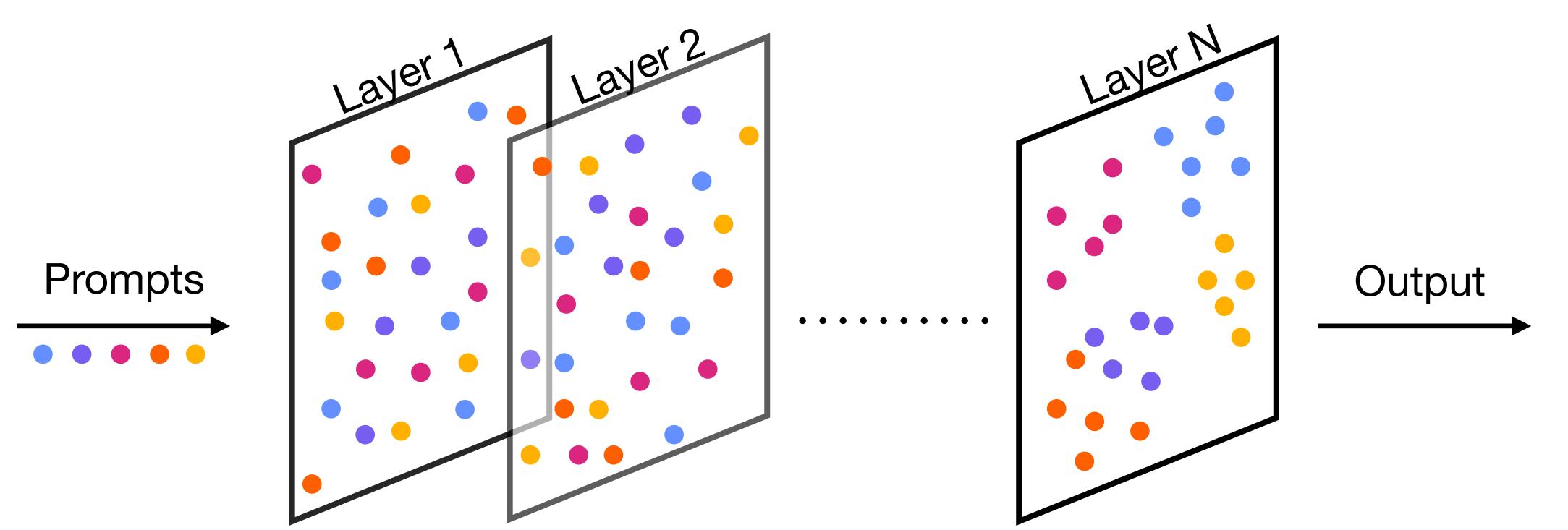






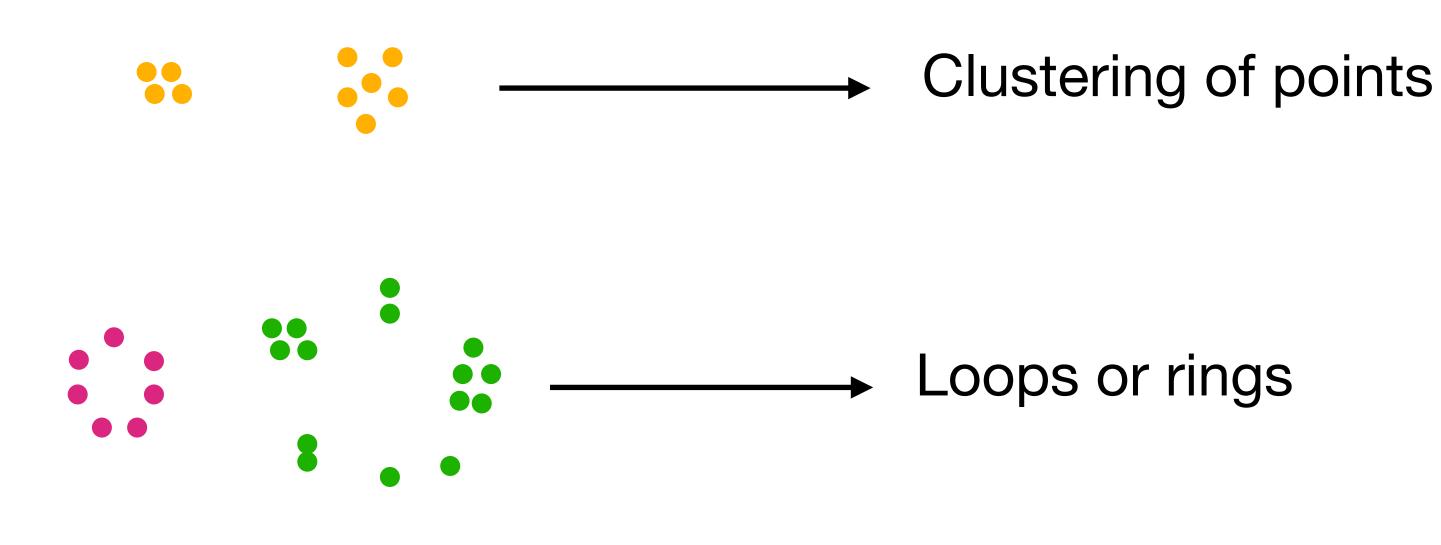


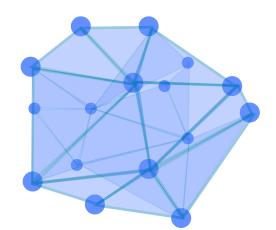




Hypothesis: distribution of prompts in representation space related to model's inner workings
Strategy: Analyse representations using topological data analysis
Goal: describe global features of LLMs

Topological Data Analysis





Calculating the shape of data

Voids in higher dimensions

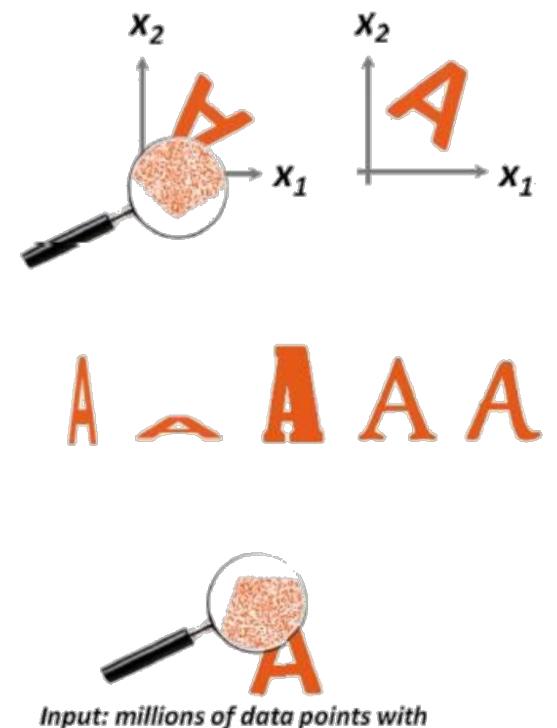
Coordinate Invariance

Deformations Invariance

Information compression

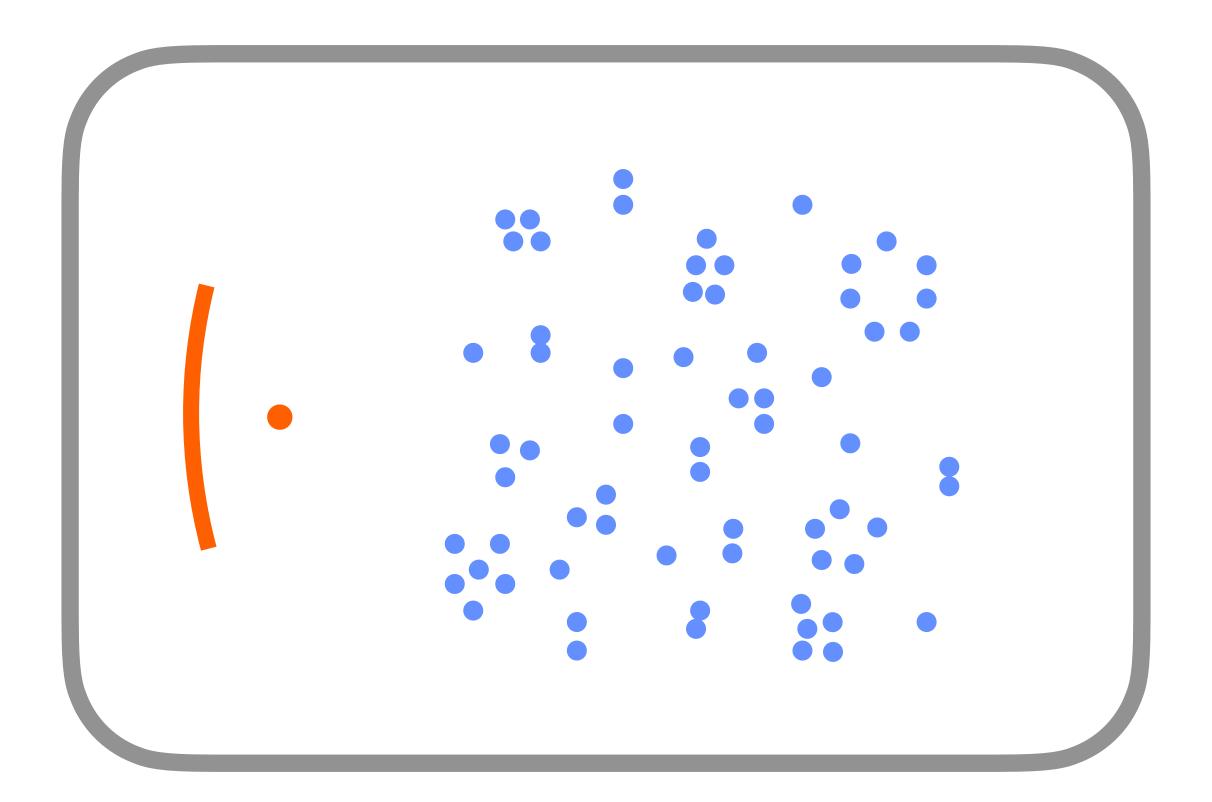
Topological Data Analysis

Calculating the shape of data



Input: millions of data points with similarity relationships.

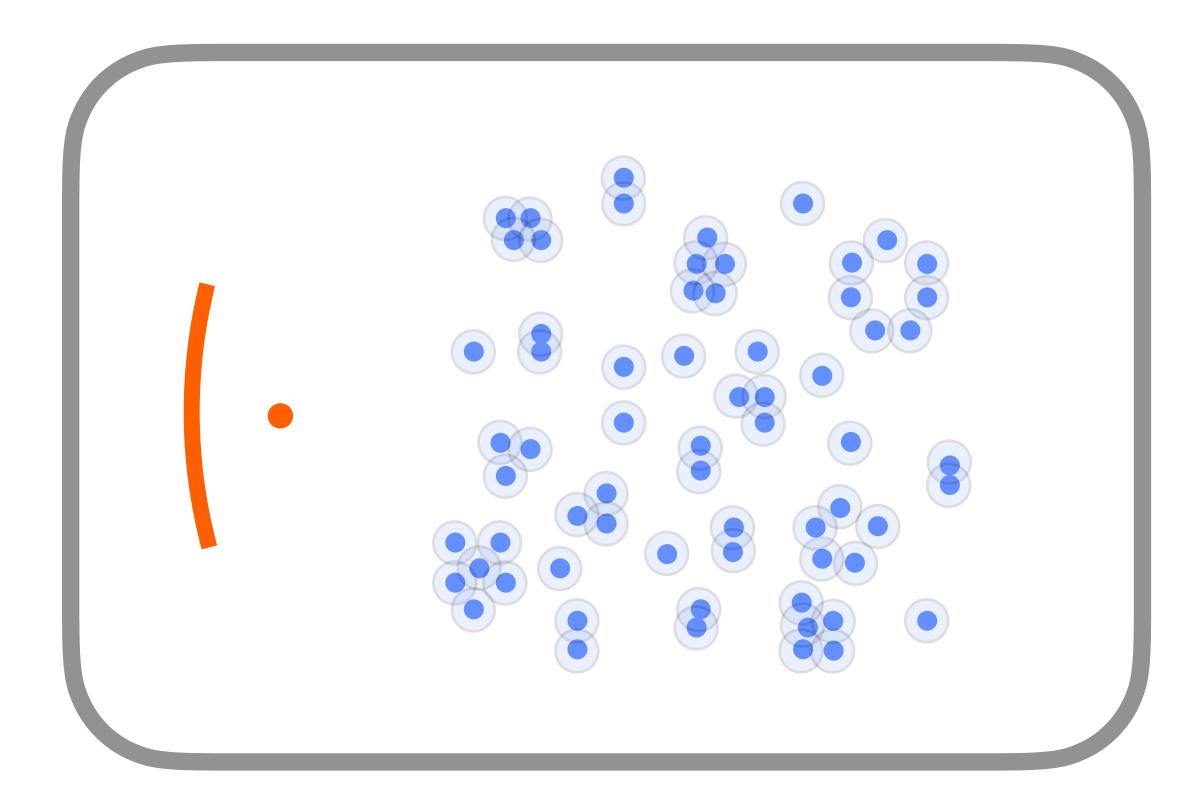
(Ohanuba et al. 2021)



Example: audience distribution at the SMASHING workshop

Topological Data Analysis

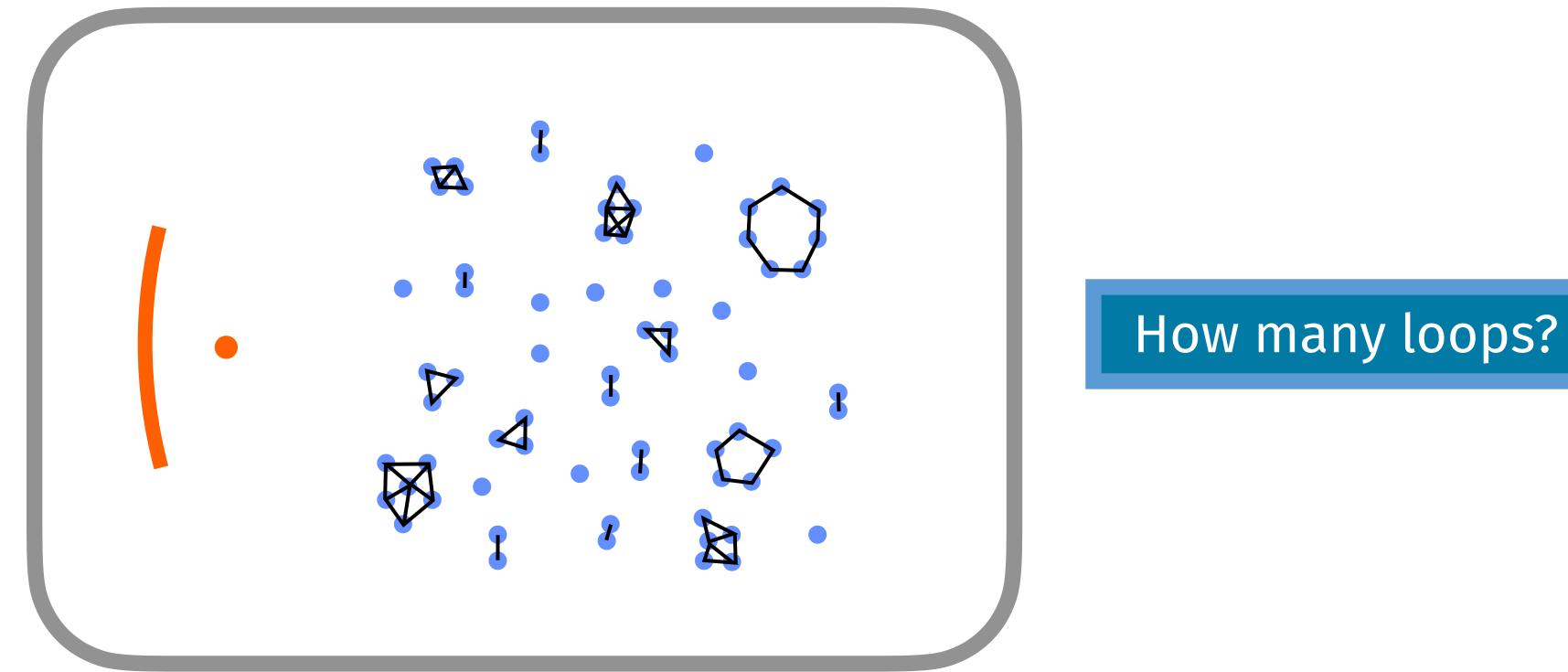
Calculating the shape of data



Topological Data Analysis

Calculating the shape of data

If we stick our elbows out, which neighbours do we touch?



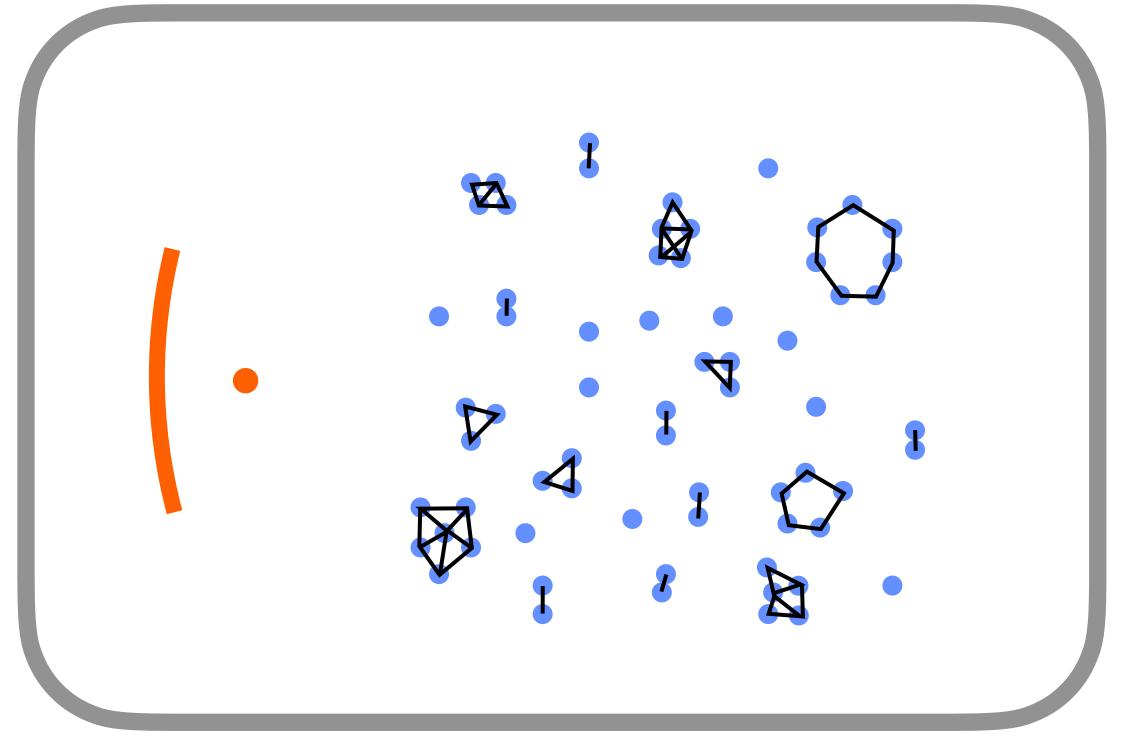
How many clusters?

Topological Data Analysis

Calculating the shape of data

If we stick our elbows out, which neighbours do we touch?

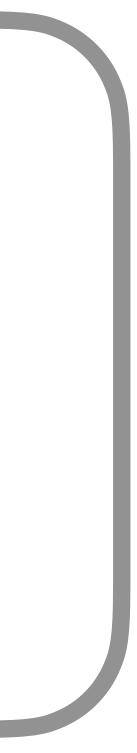
Elbows



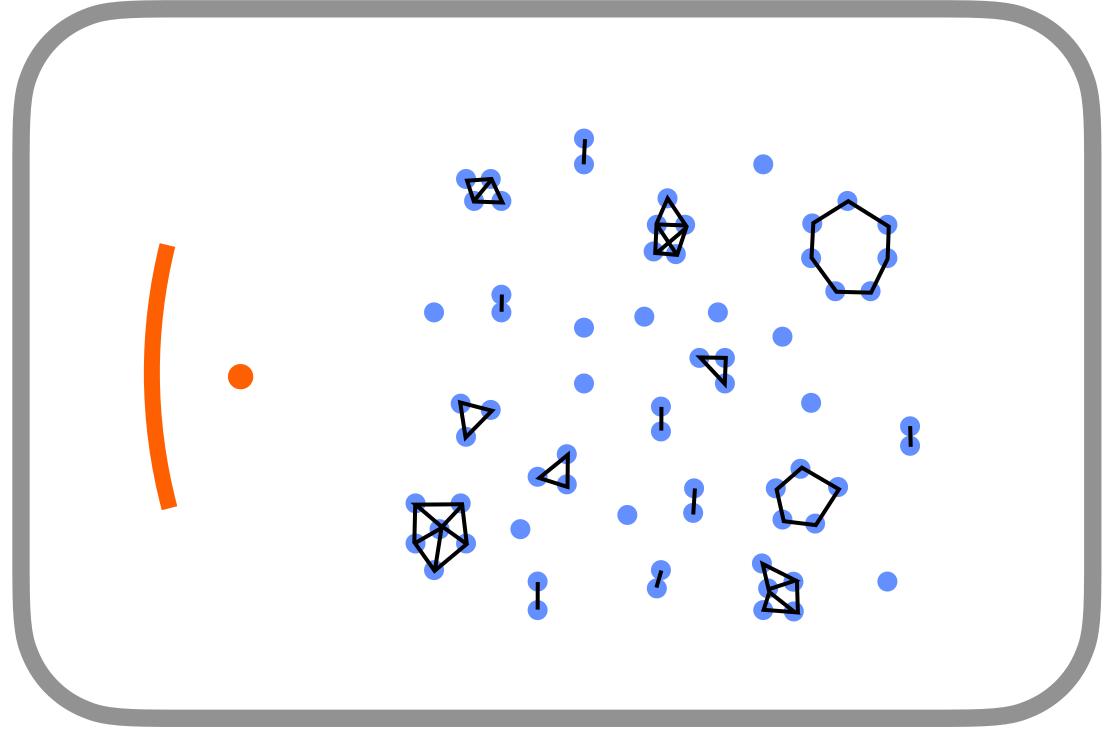
Clusters and loops that remain at varying radius are defined as persistent and considered relevant features of the dataset

Topological Data Analysis

Arms



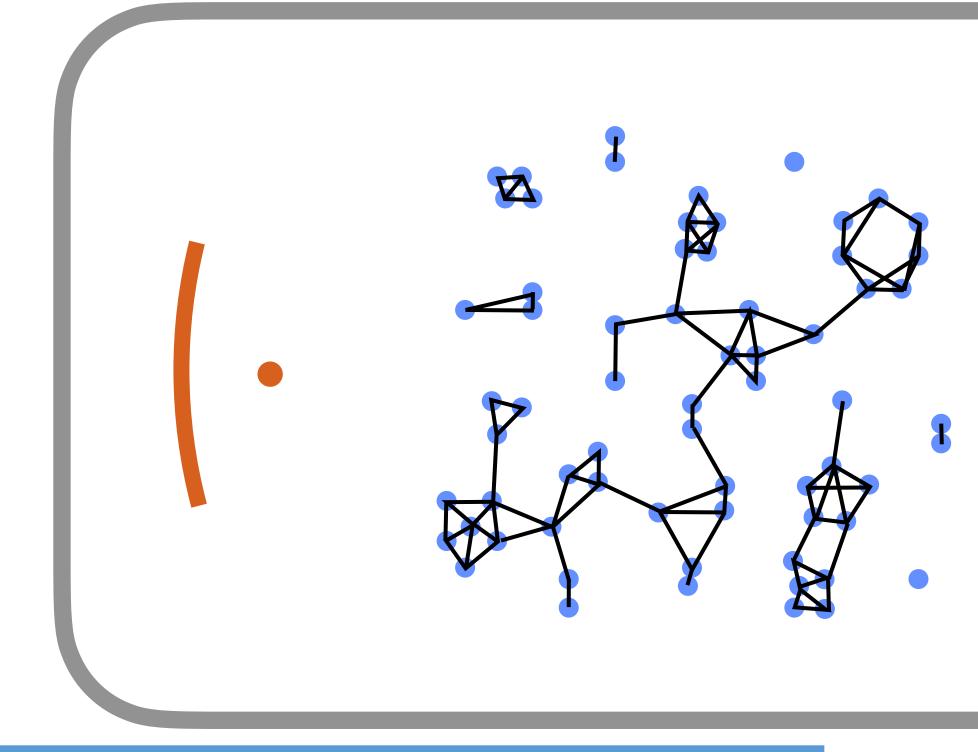
Layer 1

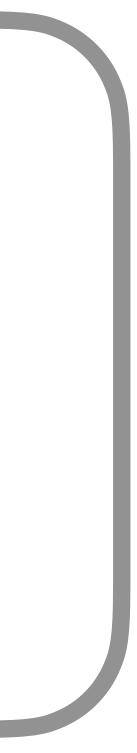


Clusters and loops that remain at varying time are defined as persistent and considered relevant features of the dataset

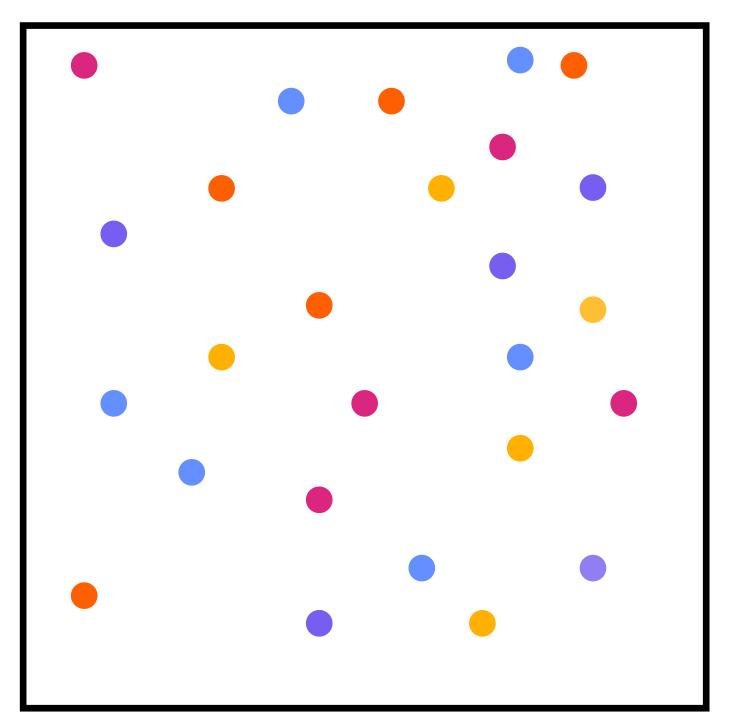
Topological Data Analysis

Layer 2



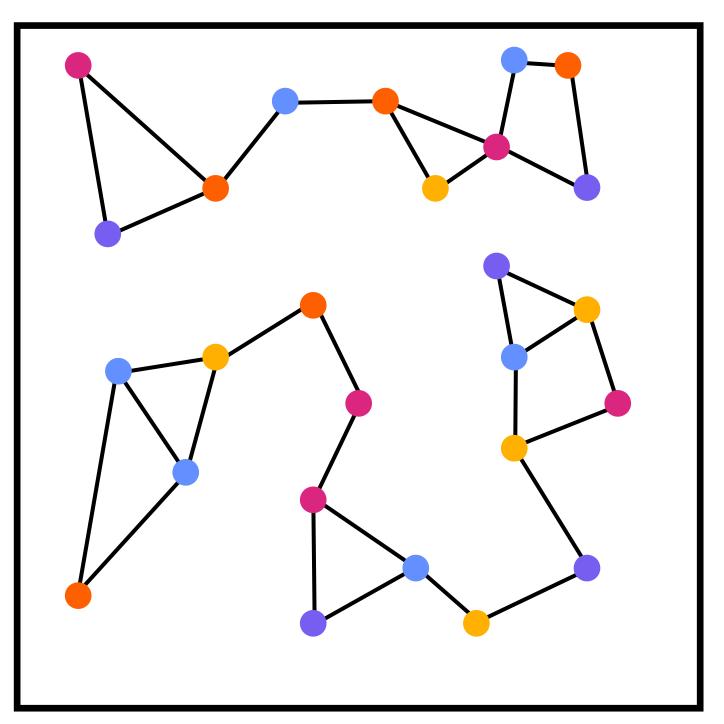


Layer 1



First step: connecting points

Layer 1

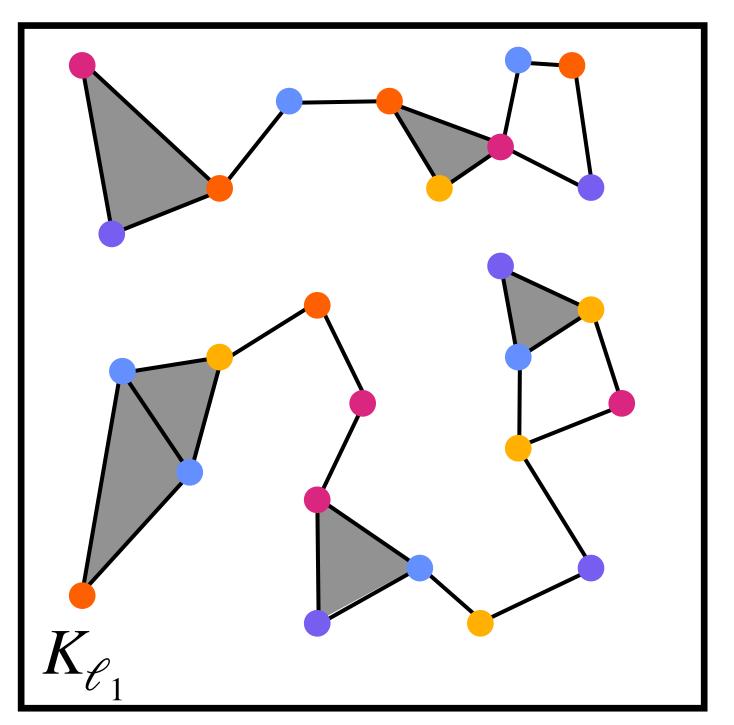


First step: connecting points

k-Nearest-Neighbours graph

 $\bullet \bullet \bullet$

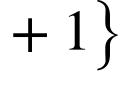
Layer 1

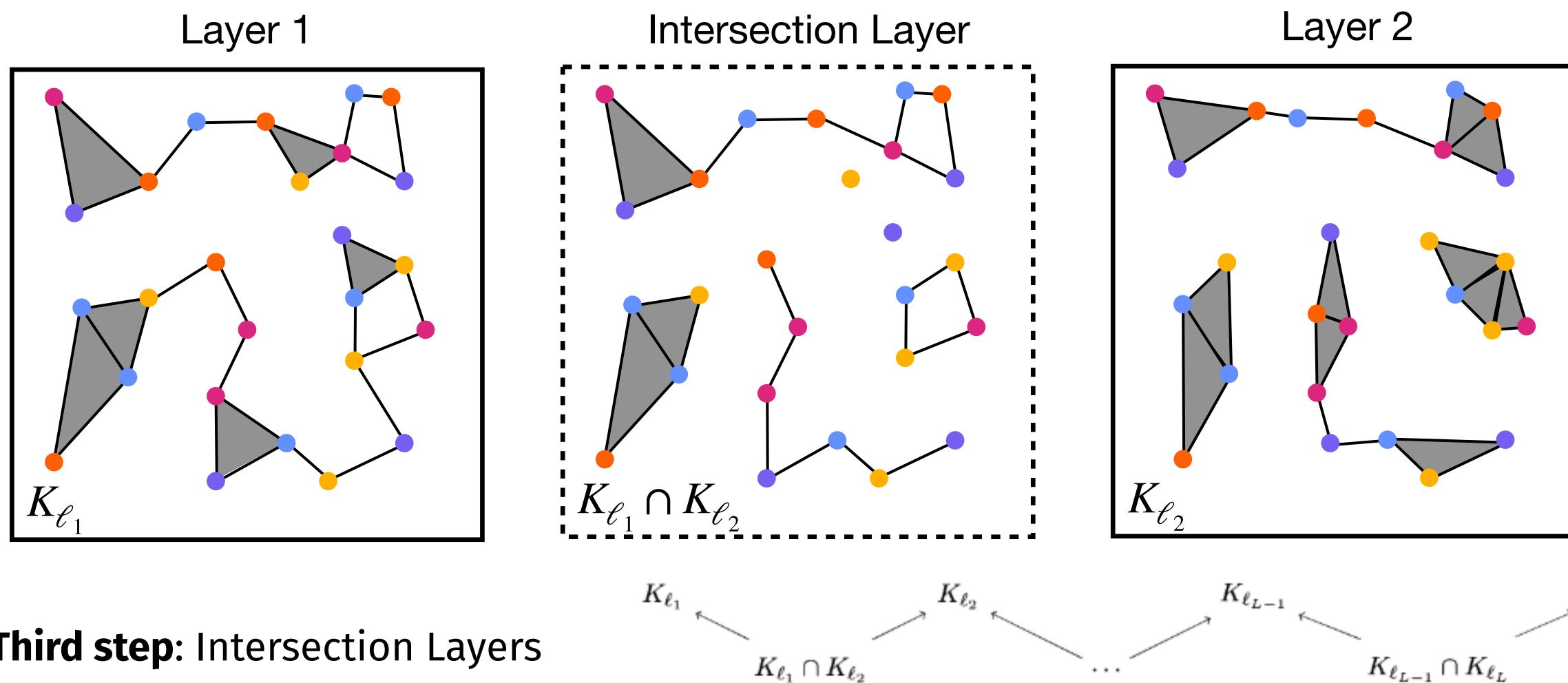


Second step: Simplicial Complex

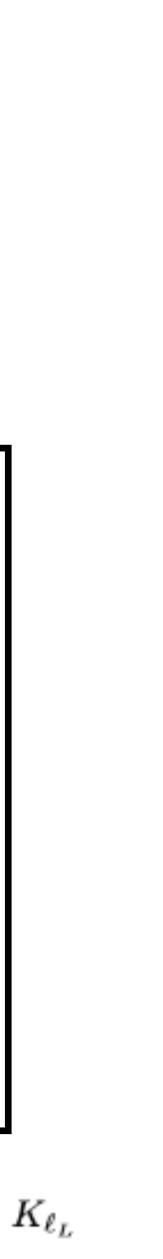
Three adjacent edges are triangles Six adjacent edges are tetrahedra

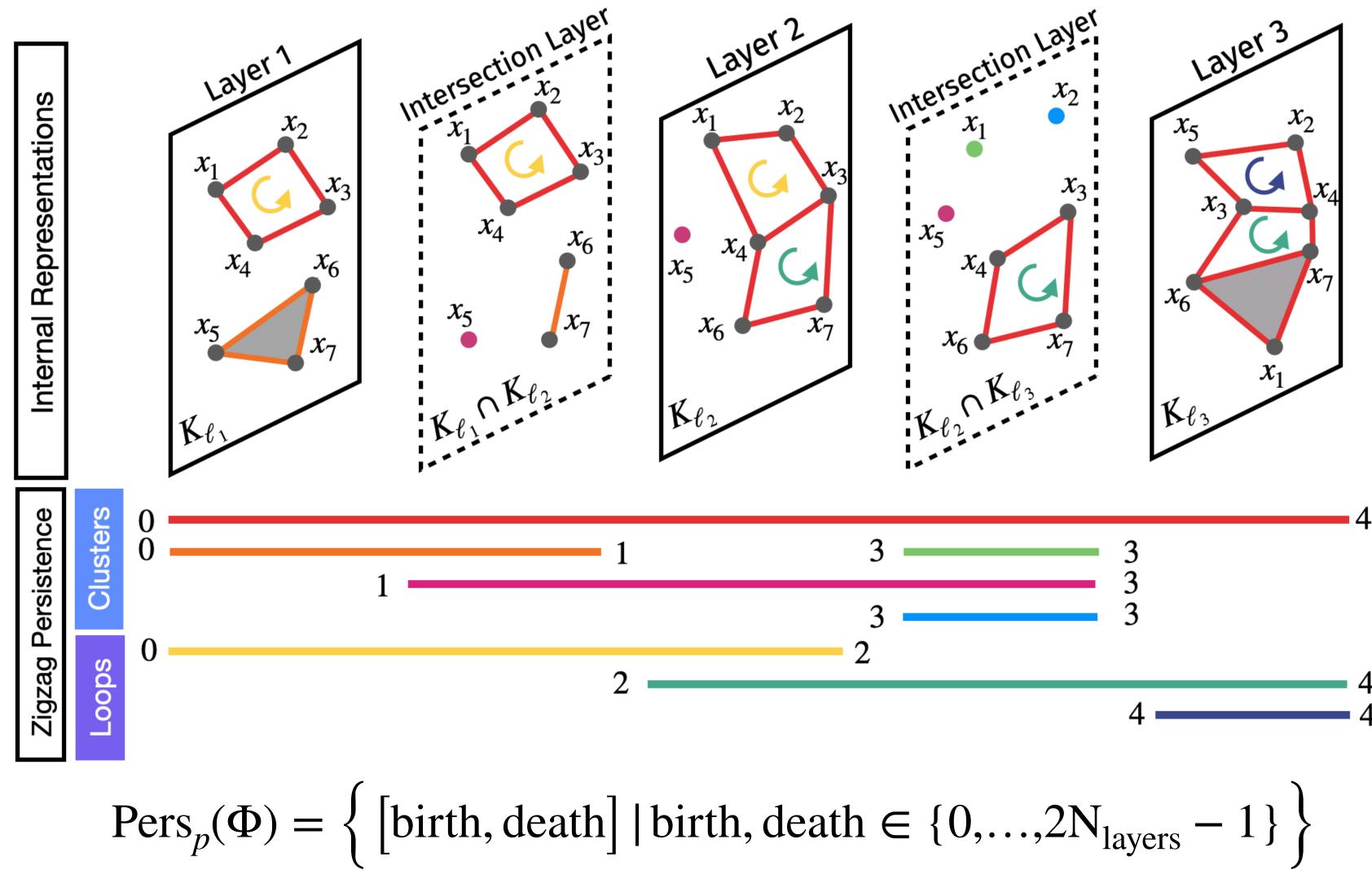
 $\forall x_s, x_l \in S, (x_s, x_l) \in E_{\ell_i} \text{ and } |S| \le m+1 \}$ $S \subseteq V_{\ell_i}$



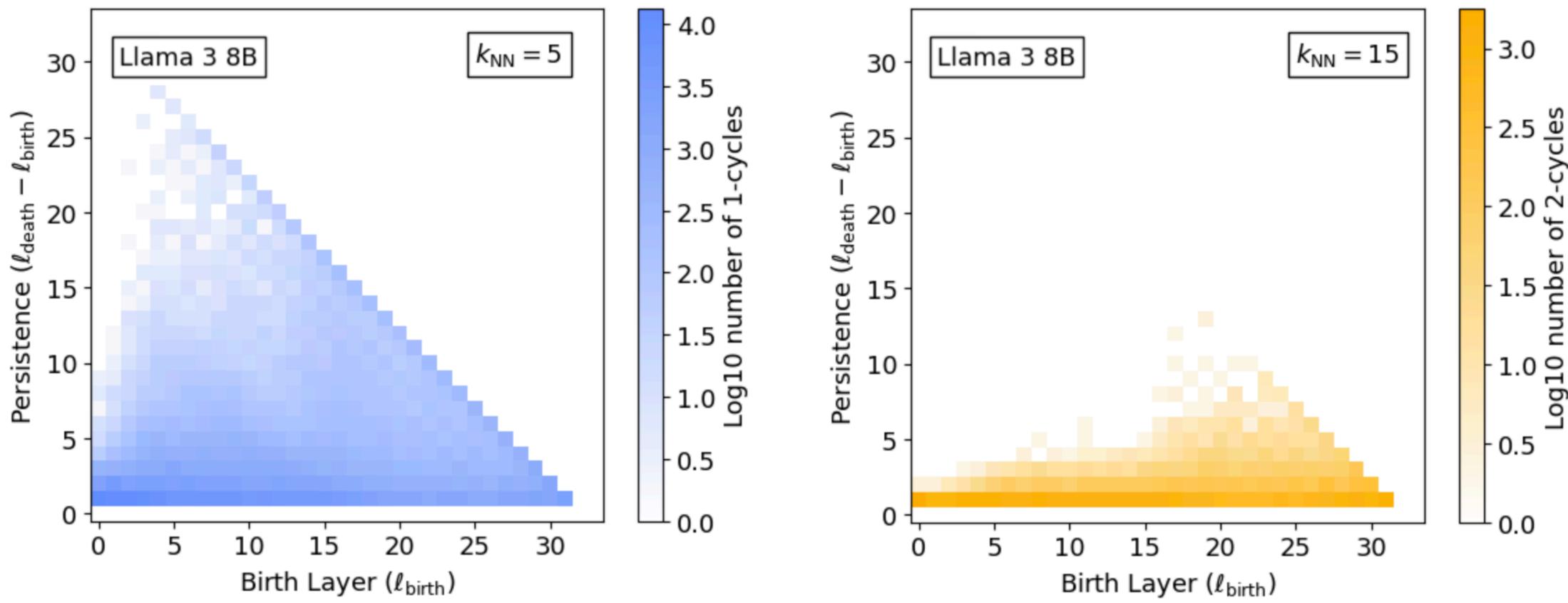


Third step: Intersection Layers





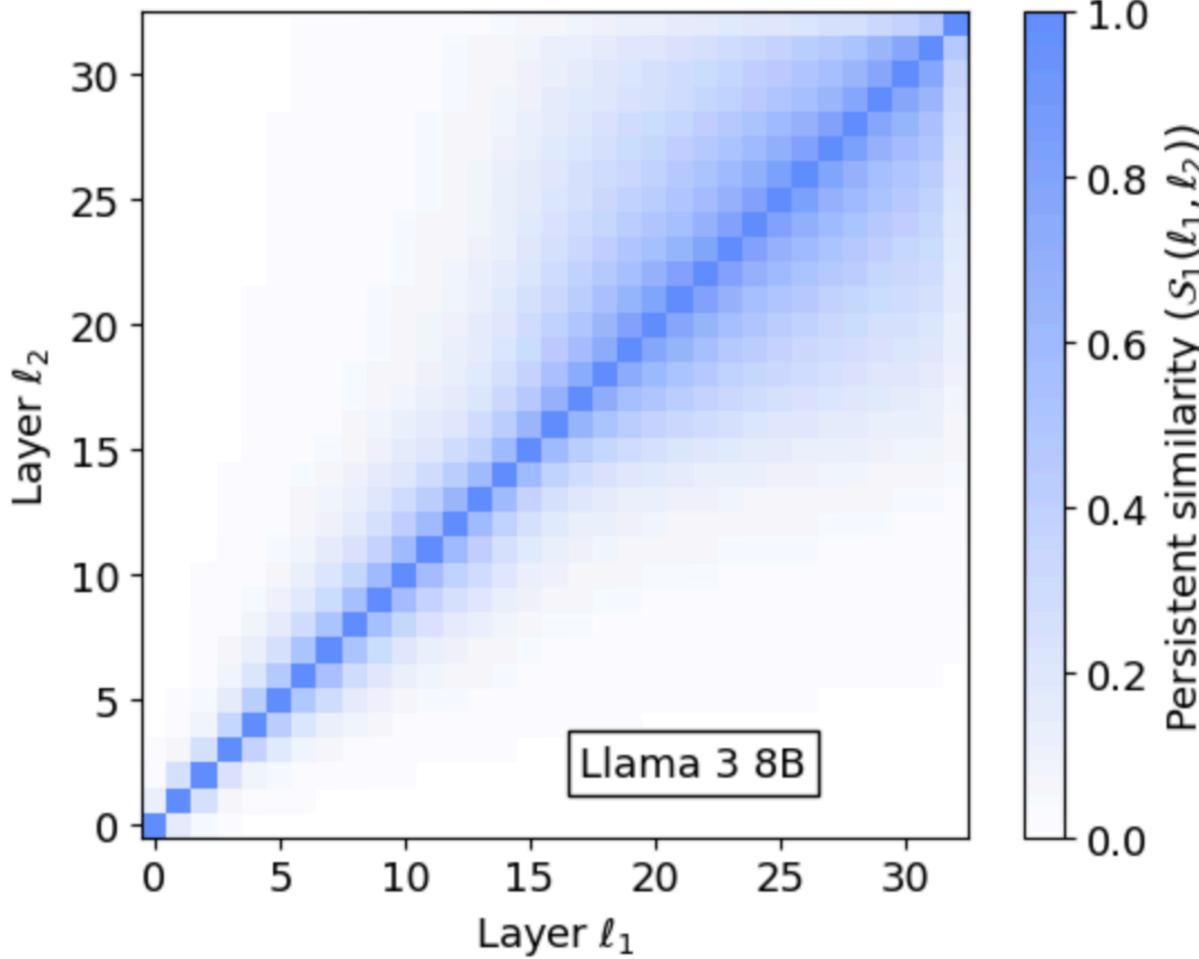
Effective Persistence Images



Build density grid from persistence diagram

Voids

Persistent Similarity



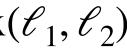
$$\mathcal{S}_{p}(\mathcal{\ell}_{1}, \mathcal{\ell}_{2}) = \frac{\sum_{\ell_{1} \leq M_{1}, \ell_{2} > M_{2}} \widehat{PI}_{p}\left(\ell_{1}, \ell_{2}, \ell_{2},$$

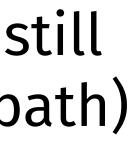
 $M_1 = \min(\ell_1, \ell_2)$ $M_2 = \max(\ell_1, \ell_2)$

Similarity measure sensitive to the features' trajectories

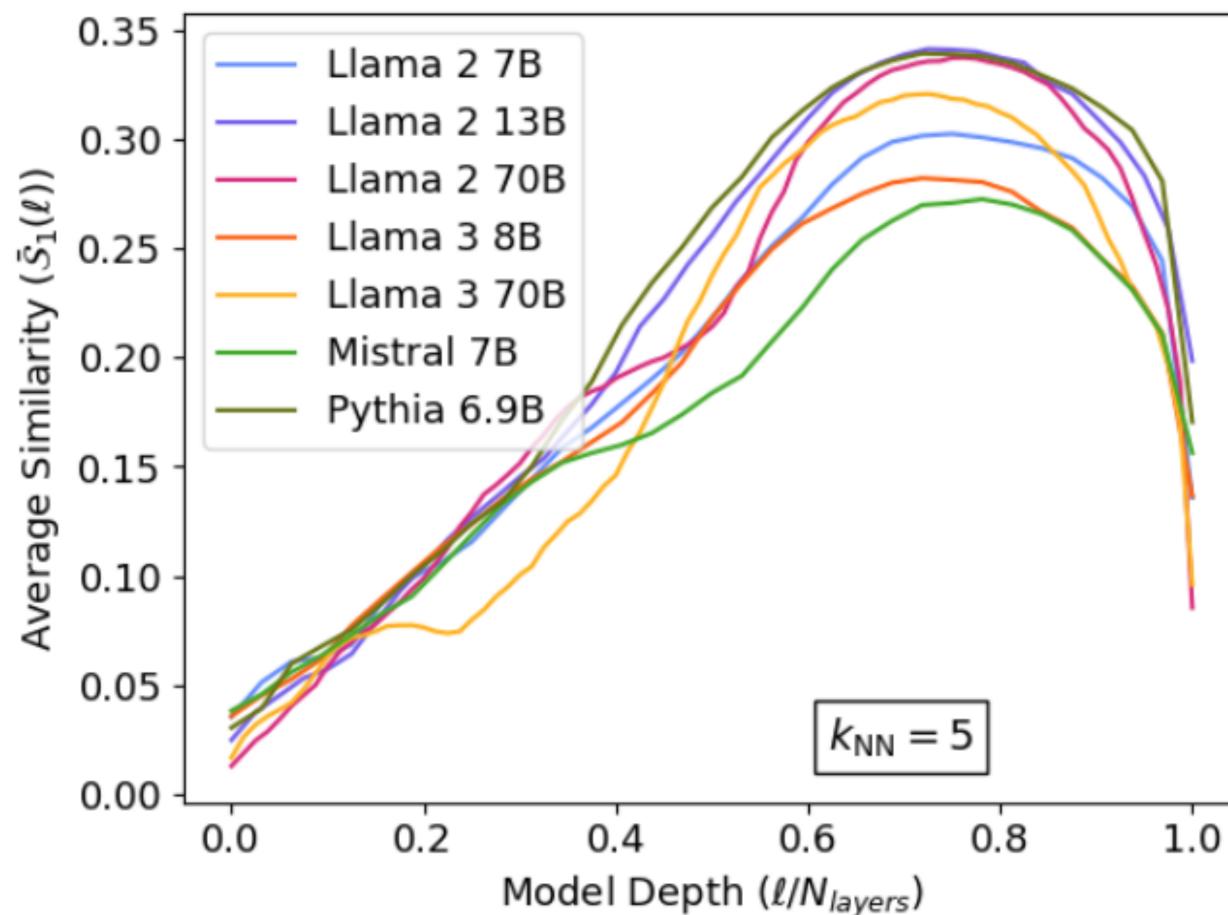
Fraction of loops alive at layer ℓ_1 that are still alive at layer ℓ_2 (and were alive the whole path)

2





Average Persistent Similarity



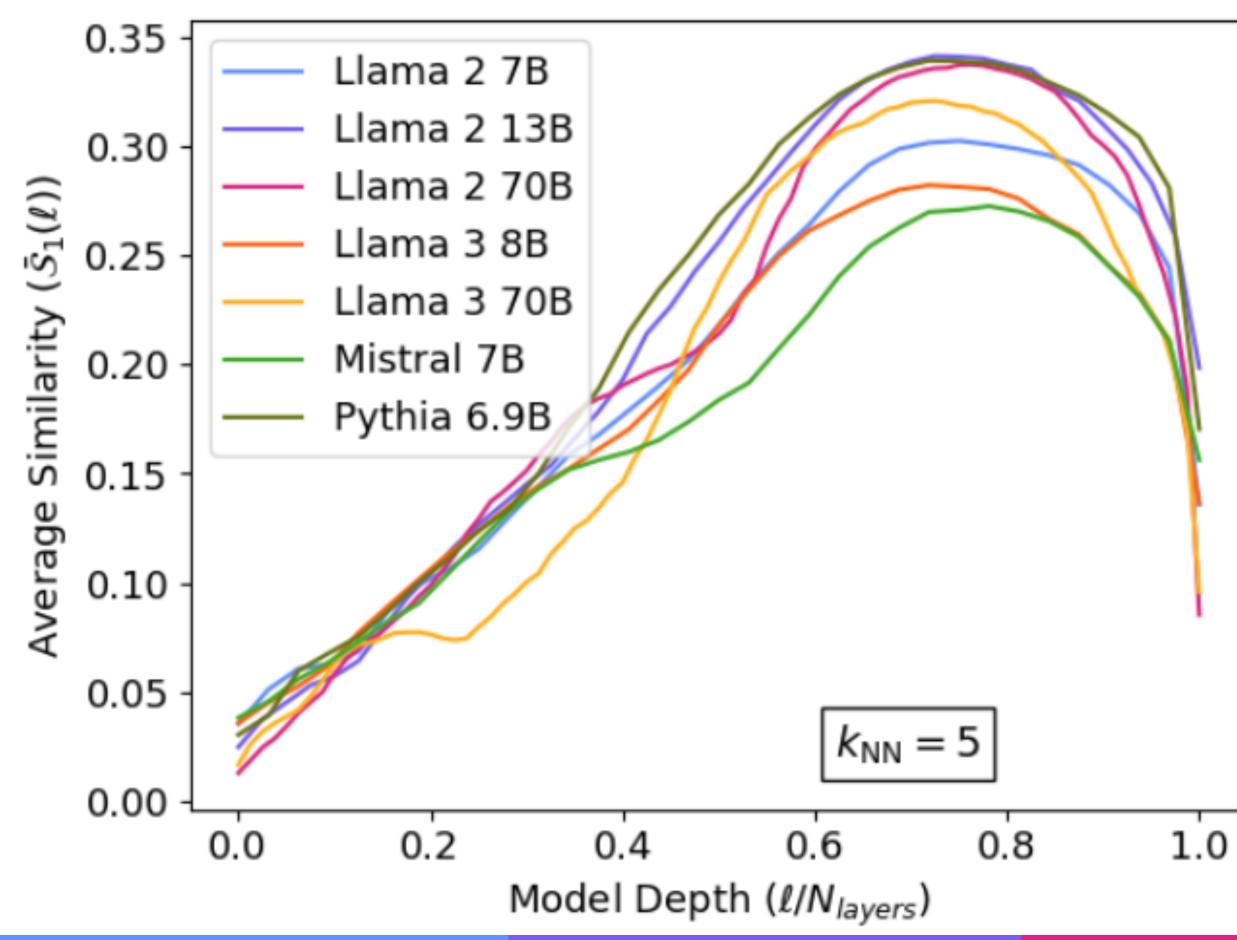
Average retention of features in each layer

$$\bar{\mathcal{S}}_{p}(\ell) = \frac{1}{N_{\text{layers}}} \sum_{\substack{N_{\text{layers}}\\\ell_{i}=1}}^{N_{\text{layers}}} \mathcal{S}_{p}(\ell, \ell_{i}),$$

low value represents a phase of change of relative positions among points

high value the relations among points are relatively stationary.

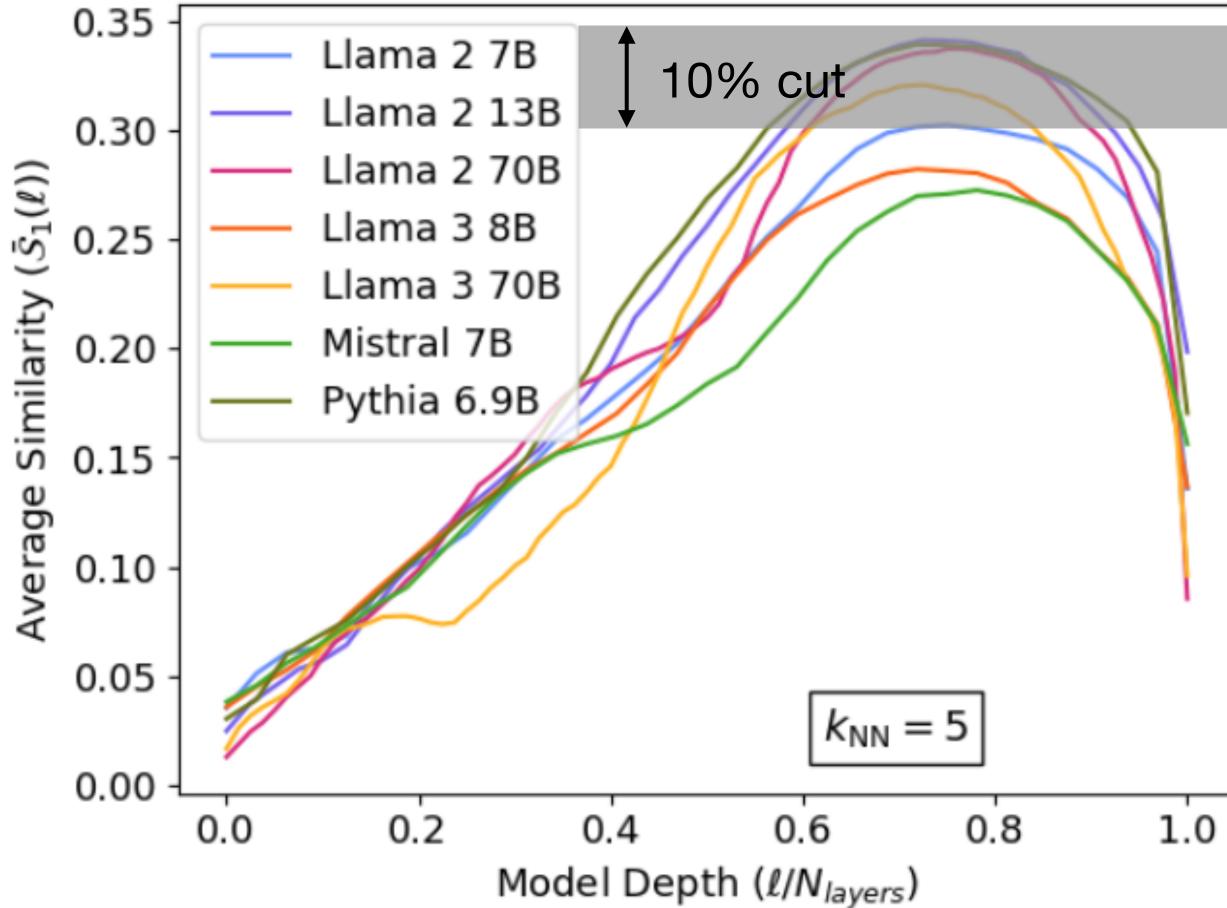
Application: layer pruning



Do we need layers were similarity is high?

Proposal: Prune layers based on similarity

Application: layer pruning



Do we need layers were similarity is high?

Proposal: Prune layers based on similarity

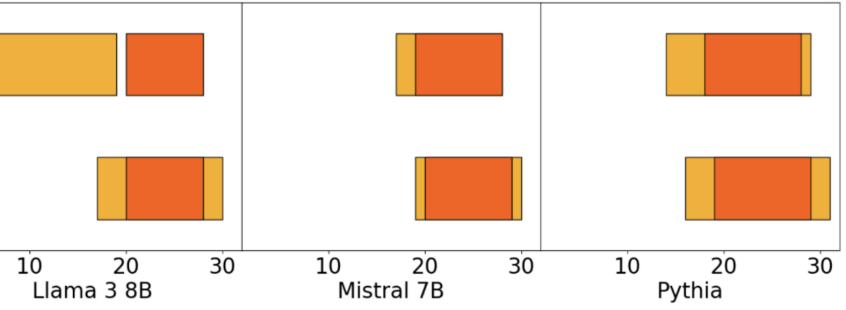
- Decide a cut (e.g. 10% of max avg similarity)
- Remove layers falling in that range
- Rebuild model without those layers 3.
- Compute performance degradation 4.

Compare to other methods of layer Gromov et al. 2024 pruning by similarity Men at al. 2024

Application: layer pruning

Proposal: Prune layers based on similarity

Models	MMLU			HellaSwag			WinoGrande		
	Full	This work	Other works	Full	This work	Other works	Full	This work	Other works
Llama 2 7B	45.74	37.38 (39.32)	43.95 (34.35)	58.54	44.71 (32.10)	42.78 (35.10)	74.43	68.67 (59.67)	67.72 (62.67)
Llama 2 13B	54.60	50.16 (36.45)	50.71 (37.91)	61.43	48.60 (34.35)	47.84 (34.52)	76.72	71.67 (63.21)	73.15 (61.47)
Llama 3 8B	65.07	53.44 (23.16)	53.44 (24.33)	61.37	41.60 (29.69)	41.60 (27.10)	77.10	70.00 (59.75)	70.00 (50.58)
Mistral 7B	62.40	53.17 (24.26)	38.20 (37.86)	62.83	36.67 (26.26)	34.45 (28.10)	77.35	66.50 (57.76)	63.76 (55.96)
Pythia	-	-	-	49.70	31.43 (31.23)	34.96 (26.84)	63.30	55.71 (54.84)	58.09 (51.07)
other works									
20% cut 10% cut									
10 20 30 Llama 2 7B			20 30 4 a 2 13B	40 10 Llar	20 30 na 3 8B		20 3 ral 7B	30 10 F	20 30 Pythia



Gromov et al. 2024 Men at al. 2024

Conclusions

- **Zig Zag Persistence:** Novel framework based on TDA to analyse internal representations of LLMs
- between two layers.
- Model Pruning: Prune layers with high persistence similarity without significantly degrading performance
- Consistency Across Models and Hyperparameters: Persistent topological and choices of hyperparameters of the framework.

• **Persistence Similarity:** new metric to measure changes in relative positions across the layers of an LLM. It tracks the entire trajectory of transformations

features and their similarities are consistent across differen models, layers,