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The CTAOs Galactic Plane Survey (GPS)

CTAO:

• Next generation ground-based observatory for very-high-energy gamma-ray 

astronomy (20 GeV - 300 TeV)

• Factor 10 higher sensitivity than existing instruments 

GPS: 

• A detailed map of gamma-ray sources in the Galactic Plane (GP)

• Expected to detect 2-5 times more (and fainter) sources than current surveys
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Prospects for GPS with CTAO, S. Abe et al., 2023
Total number of expected sources

Prospects for GPS with CTAO, S. Abe et al., 2023

Images from: https://www.ctao.org/

CTAO North

CTAO South



Main idea
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Goal:  Improve detection of faint gamma-ray sources using Machine Learning (ML)

Method:

 Simulate toy model of CTAO GPS data 

 Apply ML to detect and localize sources – AutoSourceID framework

 Explore three transformations of training data (counts, square root of counts, log of counts) for optimal flux 

sensitivity and localization accuracy

 Compare ML results with traditional likelihood-based approach



Machine learning architecture - AutoSourceID (ASID)

• Source detection and localization

• So far applied to (mock) Fermi LAT 

and MEERLICHT (optical) data 

• U-shaped convolutional networks (U-Nets)  + clustering algorithms Laplacian of Gaussian

k-means & Centroid-Net

+

Segmentation: classify every pixel belonging either to source or background  - (0: background pixel, 1: source pixel) 
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Data generation 

Set up:

• ROI: 10.24° × 10.24° centered at l = 15.12°, b = 0°

• 0.02° × 0.02° spatial resolution

• 3 logarithmically-spaced energy bins

Instrumental (cosmic-ray) background:

Source parameter distribution:

• Follow Gamma-cat catalog of know TeV gamma-ray 

sources with well defined spectral parameters 
(https://github.com/gammapy/gamma-cat)

Flux distribution of sources in our RoI compared to expected flux 

distribution over whole GP
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Point sources + instrumental (CR) background

Data generation

One realization of the simulated (log) counts map representing the number of detected events per pixel

512 x 512 x 3
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Data preparation

 700 realizations split into: 50% training, 30% validation and 20% testing

 Counts scaling - original counts, square root of counts and log of counts

• 0.1° radius mask centered on each source
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U-Net training and evaluation

• Binary cross-entropy loss 

function: 

Predicted probability

True label (0: background, 1: source)

• Early stopping

• Learning rate reduction

U-net output – per pixel probability 

map

Predicted source locations with LoG 

filter overlaid on a log scaled test image 

Preliminary
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Results: Location reconstruction + recovered flux

.

• Angular separation of true positions and predicted 

positions (TPs) 

• No significant difference between counts and log 

counts in localization accuracy

• Integrated flux of TPs 

• Log slightly better at recovering fainter sources

Bright sources

Faint sources
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Preliminary
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Results - counts scaling comparison

Model trained on log scaled counts achieves 1.7x lower flux threshold than model trained on  just counts
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Preliminary
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How to compare ML recall to traditional likelihood-based approach

 Not a simple comparison task; U-Nets do not provide 

statistical significance

 Suggested Approach: According to the ASID paper, the flux 

level where both precision and recall reach 90% might be 

roughly comparable to traditional detection sensitivity, 

though this comparison is not rigorous!

Traditional - Maximum likelihood method: 

TS=25 → 5σ

backgroundsource

Preliminary
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How to compare ML recall to traditional likelihood-based approach

 Not a simple comparison task; U-Nets do not provide 

statistical significance

 Suggested Approach: According to the ASID paper, the flux 

level where both precision and recall reach 90% might be 

roughly comparable to traditional detection sensitivity, 

though this comparison is not rigorous!

 Use traditional method on our test data and calculate  recall 

– we achieve a comparable flux threshold to our ML 

model trained on log counts! 

Traditional - Maximum likelihood method: 

TS=25 → 5σ

backgroundsource

Recall from  likelihood-based 
approach = ML Recall on log 
counts

Preliminary
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Conclusions and future prospects

 ML is proving to be a promising tool for gamma-ray analysis, though its potential still must be explored

We find that:

 Data scaling methods affect model performance, with logarithmic scaling showing the most promise for 
detecting faint sources.

 ML demonstrated comparable sensitivity to traditional methods, with potential improvements 
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Thank you!

 Future work will include a binary classifier to reduce false positives and expanding methods to detect extended 
sources

 Consider testing background-subtracted data to improve signal-to-noise ratio
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ML training

Binary cross-entropy loss function: 

add arrow

Epochs Epochs

Dice coeff: captures intersetion over the whole union

Predicted probability

True label (0: background, 1: source)



Separation threshold

0.03 deg 0.05 deg



Separation threshold



Background removal



Implications on DM sub-halo search

• Gamma-ray flux scales linearly with cross-section

• Potential to have higher flux sensitivity (up to 4x) lower 

annihilation cross-section by the same factor – not a direct 

comparison!
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