Towards an Automatic Source Detection Pipeline in the Galactic Plane Survey by CTAO using Deep Learning

Author: Zoja Rokavec Mentor: prof. dr. Gabrijela Zaharijaš

- Next generation ground-based observatory for very-high-energy gamma-ray astronomy (20 GeV - 300 TeV)

Main idea

Goal: Improve detection of faint gamma-ray sources using Machine Learning (ML)

Method:

- Simulate toy model of CTAO GPS data
- Apply ML to detect and localize sources AutoSourceID framework
- Explore three transformations of training data (counts, square root of counts, log of counts) for optimal flux sensitivity and localization accuracy
- Compare ML results with traditional likelihood-based approach

Machine learning architecture - AutoSourceID (ASID)

Segmentation: classify every pixel belonging either to source or background - (0: background pixel, 1: source pixel)

AutoSourceID-Light

Fast optical source localization via U-Net and Laplacian of Gaussian

F. Stoppa^{1,7}, P. Vreeswijk¹, S. Bloemen¹, S. Bhattacharyya², S. Caron^{3,4}, G. Jóhannesson⁵, R. Ruiz de Austri⁶, C. van den Oetelaar³, G. Zaharijas^{2,13}, P. J. Groot^{1,8,9,10}, E. Cator⁷, and G. Nelemans^{1,11,12}

Laplacian of Gaussian

$$= -\frac{1}{\pi\sigma^4} \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Data generation

Set up:

- ROI: 10.24° × 10.24° centered at I = 15.12°, b = 0°
- 0.02° × 0.02° spatial resolution
- 3 logarithmically-spaced energy bins

Instrumental (cosmic-ray) background:

Source parameter distribution:

• (https://github.com/gammapy/gamma-cat)

Flux distribution of sources in our Rol compared to expected flux distribution over whole GP

Follow Gamma-cat catalog of know TeV gamma-ray sources with well defined spectral parameters

Data generation

Point sources + instrumental (CR) background

One realization of the simulated (log) counts map representing the number of detected events per pixel

Data preparation

- 700 realizations split into: 50% training, 30% validation and 20% testing
- Counts scaling original counts, square root of counts and log of counts
- 0.1° radius mask centered on each source

U-Net training and evaluation

True label (0: background, 1: source)

- Early stopping
- Learning rate reduction

U-net output – per pixel probability map

Predicted source locations with LoG filter overlaid on a log scaled test image

Results: Location reconstruction + recovered flux

Preliminary

- Angular separation of true positions and predicted positions (TPs)
- No significant difference between counts and log counts in localization accuracy

• Integrated flux of TPs

• Log slightly better at recovering fainter sources

Results - counts scaling comparison

Model trained on log scaled counts achieves 1.7x lower flux threshold than model trained on just counts

How to compare ML recall to traditional likelihood-based approach

Traditional - Maximum likelihood method:

$$TS = -2 \ln \left(\frac{\mathcal{L}(\mu_b)}{\mathcal{L}(\mu_s + \mu_b)} \right)$$
 TS=25 \rightarrow 50 source background

 Not a simple comparison task; U-Nets do not provide statistical significance

 Suggested Approach: According to the ASID paper, the flux level where both precision and recall reach 90% might be roughly comparable to traditional detection sensitivity, though this comparison is not rigorous!

How to compare ML recall to traditional likelihood-based approach

Traditional - Maximum likelihood method:

$$TS = -2 \ln \left(\frac{\mathcal{L}(\mu_b)}{\mathcal{L}(\mu_s + \mu_b)} \right)$$
 TS=25 \rightarrow 50 source background

 Not a simple comparison task; U-Nets do not provide statistical significance

 Suggested Approach: According to the ASID paper, the flux level where both precision and recall reach 90% might be roughly comparable to traditional detection sensitivity, though this comparison is not rigorous!

Use traditional method on our test data and calculate recall

 we achieve a comparable flux threshold to our ML
 model trained on log counts!

Conclusions and future prospects

• ML is proving to be a promising tool for gamma-ray analysis, though its potential still must be explored

We find that:

- Data scaling methods affect model performance, with logarithmic scaling showing the most promise for detecting faint sources.
- ML demonstrated comparable sensitivity to traditional methods, with potential improvements
- Future work will include a binary classifier to reduce false positives and expanding methods to detect extended sources
- Consider testing background-subtracted data to improve signal-to-noise ratio

Thank you!

ML training

Binary cross-entropy loss function:

Dice coeff: captures intersetion over the whole union

Separation threshold

0.03 deg

0.05 deg

Separation threshold

Background removal

With Background

Diffusion Denoise Epoch: 39

Diffusion Denoise Epoch: 39

No Background Prediction

Implications on DM sub-halo search

