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Introduction - reinforcement learning (RL)
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o A decision-maker (the agent) interacts with some environment that
changes states

@ The agent observes state S;, selects action A; which produces reward R;;
and influences S;.1, etc.

@ lts behavior is given by a policy m mapping states to actions (deterministic)
or probability distributions over the action space (stochastic)

@ Trial-and-error interaction yields trajectories (So, Ag, R1, ..., St, At, Re41, -..)
based on which learning is done
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Introduction - reinforcement learning (RL) (cont.)
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@ The agent tries to maximize the expected return:
Gi=Riy1+YRp2+ ... = Z,fio 'y" R4 k41 by selecting actions given states

@ 0 <y < 1is adiscount factor: v =0 — myopic agent, v = 1 — long-termist

o Finding the optimal policy 7* that maximizes the expected return

o Formally, modeled as a Markov Decision Process (MDP), given by the tuple:
(S, A, P,R,~) where S is a set of states, A is a set of actions, P the
probability transition matrix, R the reward function

@ Markov property: S;,1 depends only on S; and A; and not the history of

states/actions
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Deep reinforcement learning (DRL)

@ The use of deep neural networks (DNNs) as function approximators in RL

o used to approximate entities of interest, commonly the policy 7, parametrized
as mg, where 0 denotes the DNN parameters

reward

action .
Environment

deep neural net

@ Astonishing accomplishments in multiple domains: games [1], robotics [2],
etc.
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Meta-reinforcement learning (metaRL)

@ In meta-RL [5, 6], instead of solving a single task (environment), the goal is
quick adaptation to different, unseen tasks (environments)

@ Using knowledge from previous tasks to tackle new ones

@ Represent [6] some meta-knowledge (meta-parameters) as w. Now we search
for:

w* = argmax Epwprt)Ermr rge [GT] (1)
w

where M denotes an MDP, p(M) a distribution over MDP-s, T a trajectory
/an episode, and T the total number of time-steps in an episode

@ Essentially bi-level optimization:

o the inner level (loop) optimizes the objective (i.e., RL policy parameters 0)
o the outer level optimizes the meta-objective (e.g., reward formulation,
initialization, any type of meta-parameter w)
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Evolutionary reinforcement learning (evoRL)

@ Evolutionary reinforcement learning (evoRL) includes any method integrating
evolutionary computation (EC) into RL, including metaRL
o Directly finding (near-)optimal policies 7* (policy search)
e Finding a wide array of policies exhibiting mutually diverse behaviors (diversity
encouragement)
o Finding the optimal initialization of policy parameters (meta-learning)
o Reward shaping (also meta-learning)
e etc.

@ Why evoRL?
o Papers showing that evolutionary strategies (ES) [3] and genetic algorithms
(GA) [4] offer a competitive alternative to gradient-based approaches
e Simple, can also work with deterministic policies, reducing the noise
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Meta evolutionary reinforcement learning (meta-evoRL)

@ Optimizing the outer loop (meta-objective) in a gradient-free manner [5, 6]
@ no need for explicit bi-level optimization
@ works with non-differentiable meta-objectives
© avoid the high computational overhead of high-order gradients
@ scalable: easy parallelization (population-based)

Example: population-based evolution via a genetic algorithm, where each
solution (individual) is given by:
X:(91,92,...,9,1,(,«]170.)2,...,wm) (2)

where n (resp. m) is the number of parameters (resp. meta—parameters).

The parameters and meta-parameters then coevolve

Search in the union of the space of parameters and meta-parameters (© U Q)
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FERLUDE SMASH and meta-learning

@ As part of my recently started SMASH project FERLUDE (Few-shot
evolutionary reinforcement learning under uncertain and dynamic
environments), we are particularly interested in exploring the intersection of
evolutionary computation, reinforcement learning, and meta-learning

@ We are particularly interested in investigating underemployed
evolutionary/biological mechanisms and principles in the context of evoRL
and meta-evoRL - these are not novel meta-heuristics

@ We hypothesize that the use of evolutionary concepts/principles such as
evolvability and higher-order mutation rates can lead to more robust evoRL
agents, especially when facing dynamic (non-stationary) environments
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Principle 1: evolvability

@ While many definitions of evolvability exist, it is commonly defined as the ability of
an individual or population to produce offspring with mutually diverse
behaviors/phenotypes

@ From an EC/ERL perspective, two separate functions are needed:
o the fitness function f : © — R mapping solutions to fitness values

o the behavior function b : © — B mapping solutions to their corresponding
behaviors/phenotypes

@ Used in quality-diversity (QD) and novelty search (NS) families of approaches

@ Example: given robot parameters 6, f(0) is the robot’s speed, and b(@) the type of
its gait (e.g. one-legged, symmetric, etc.)

O

Parent solution

D0

Children solutions

Figure: Phenotypically evolvable solution where phenotype .= [color, shape]
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Principle 1: evolvability (con

@ A solution 8 is phenotypically evolvable if small perturbations of 8 (representing its
children) lead to significant changes in the corresponding phenotypes/behaviors
(6"~ 6, b(6") % b(0))

@ Highly evolvable solutions might serve as good starting points (initializations) when
facing dynamic environments, as only a few mutations are needed to obtain
different behaviors, each of which might perform well under different circumstances

Figure: Imagine evolvable solutions as saddle points in the © — B mapping
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Principle 1: evolvability (con

@ Some prior research: Gasperov et al. [7] study evolvability in the context of
neuroevolutionary divergent search (a form of novelty search) on an evoRL
robotics task, finding that more pressure for novelty means higher evolvability

@ Similar prior findings by Doncieux et al. [8] with novelty search promoting
evolvability

Evolvability on the Pick And Place task - different walks
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Principle 1: evolvability - future work

o Current research assumes that the variation (mutation) operators are static,
and themselves exempt from the evolutionary process, which is not the case
with biological evolution

@ General idea: ideally, no operators are fixed, everything evolves!
@ Rethinking evolvability...

We will focus on finding solutions that are not only evolvable in
producing diverse offspring, but are also tied to mutation opera-
tors that promote long-term evolvability.

— We aim to find evolvable solutions within the © U Q space,
enhancing the evolutionary potential of the system.
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Principle 2: higher-order mutation rates

@ We also investigate the use of higher-order mutation rates; while meta-mutation
rate corresponds to meta-learning, higher-order mutation rates represent
higher-order meta-learning

@ Idea: mutation rate is not fixed, but its variance is controlled by a meta-mutation
rate, which is in turn controlled by a meta-meta-mutation rate, etc.

@ A tower of (meta)-mutations

@ In a Gaussian case:

0 ~N(0,01),
o NN(O’,‘,O’,-2+1) ,1<i<n, (3)

/ 2
Op ~ N (0177 0meta> s

where 6 denotes the solution, o; the mutation rate of order i, ometa the fixed top
meta-mutation rate, and N(,-) the Gaussian mutation operator parametrized by
the mean and variance. The order is given by n - the tower height.
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Principle 2: higher-order mutation rates (con

@ We also study what happens if we let the meta-learning order itself evolve.

@ Some preliminary results indicate that the mean meta-learning order in the order

increases precisely when dynamic changes in the environment take place.

@ The system adjusts the mean meta-learning order accordingly!

Evolved meta-learning order
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Conclusion (with further principles and ideas)

The exploration of different evolutionary principles for the development
of more robust, high-performing, sample-efficient RL agents, especially in
uncertain and dynamic environments - the essence of the FERLUDE project.

@ Much remains to be investigated

o Self-adaptivity in general: dynamic (evolving) evolutionary operators -
co-evolution of agents, environments, and operators themselves

e For example, evolving the amount of selective pressure, instead of setting it
exogenously ("selecting for selection”) [9]

o New types of regularization (e.g. sparsity, binary mask overlaid over DNN
weights)

o Links between risk-aversion and exploration strategies
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