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Bruno Gašperov, PhD Prof. Branko Šter, PhD Meta-learning in evolutionary reinforcement learning: some paths forwardOctober 8, 2024 1 / 18



Introduction - reinforcement learning (RL)

A decision-maker (the agent) interacts with some environment that
changes states

The agent observes state St , selects action At which leads to reward Rt+1

and influences the next state St+1, etc.

Its behavior is given by a policy π mapping states to actions (deterministic)
or probability distributions over the action space (stochastic)

Trial-and-error interaction yields trajectories (S0,A0,R1, ...,St ,At ,Rt+1, ...)
based on which learning is done
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Introduction - reinforcement learning (RL) (cont.)

The agent tries to maximize the expected return:
Gt = Rt+1 + γRt+2 + . . . =

∑∞
k=0 γ

kRt+k+1 by selecting actions given states
0 ≤ γ ≤ 1 is a discount factor: γ = 0 → myopic agent, γ = 1 → long-termist
Finding the optimal policy π∗ that maximizes the expected return
Formally, modeled as a Markov Decision Process (MDP), given by the tuple:
(S,A,P,R, γ) where S is a set of states, A is a set of actions, P the
probability transition matrix, R the reward function
Markov property: St+1 depends only on St and At and not the history of
states/actions

Bruno Gašperov, PhD Prof. Branko Šter, PhD Meta-learning in evolutionary reinforcement learning: some paths forwardOctober 8, 2024 3 / 18



Deep reinforcement learning (DRL)

The use of deep neural networks (DNNs) as function approximators in RL

used to approximate entities of interest, commonly the policy π, parametrized
as πθ, where θ denotes the DNN parameters

Astonishing accomplishments in multiple domains: games [1], robotics [2],
etc.
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Meta-reinforcement learning (metaRL)

In meta-RL [5, 6], instead of solving a single task (environment), the goal is
quick adaptation to different, unseen tasks (environments)

Using knowledge from previous tasks to tackle new ones

Represent [6] some meta-knowledge (meta-parameters) as ω. Now we search
for:

ω∗ = argmax
ω

EM∼p(M)Eτ∼M,πθ∗ [GT ] (1)

where M denotes an MDP, p(M) a distribution over MDP-s, τ a trajectory
/an episode, and T the total number of time-steps in an episode

Essentially bi-level optimization:

the inner level (loop) optimizes the objective (i.e., RL policy parameters θ)
the outer level optimizes the meta-objective (e.g., reward formulation,
initialization, any type of meta-parameter ω)
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Evolutionary reinforcement learning (evoRL)

Evolutionary reinforcement learning (evoRL) includes any method integrating
evolutionary computation (EC) into RL, including metaRL

Directly finding (near-)optimal policies π∗ (policy search)
Finding a wide array of policies exhibiting mutually diverse behaviors (diversity
encouragement)
Finding the optimal initialization of policy parameters (meta-learning)
Reward shaping (also meta-learning)
etc.

Why evoRL?

Papers showing that evolutionary strategies (ES) [3] and genetic algorithms
(GA) [4] offer a competitive alternative to gradient-based approaches
Simple, can also work with deterministic policies, reducing the noise
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Meta evolutionary reinforcement learning (meta-evoRL)

Optimizing the outer loop (meta-objective) in a gradient-free manner [5, 6]
1 no need for explicit bi-level optimization
2 works with non-differentiable meta-objectives
3 avoid the high computational overhead of high-order gradients
4 scalable: easy parallelization (population-based)

Example: population-based evolution via a genetic algorithm, where each
solution (individual) is given by:

x = (θ1, θ2, . . . , θn, ω1, ω2, . . . , ωm) (2)

where n (resp. m) is the number of parameters (resp. meta-parameters).

The parameters and meta-parameters then coevolve

Search in the union of the space of parameters and meta-parameters (Θ ∪ Ω)
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FERLUDE SMASH and meta-learning

As part of my recently started SMASH project FERLUDE (Few-shot
evolutionary reinforcement learning under uncertain and dynamic
environments), we are particularly interested in exploring the intersection of
evolutionary computation, reinforcement learning, and meta-learning

We are particularly interested in investigating underemployed
evolutionary/biological mechanisms and principles in the context of evoRL
and meta-evoRL - these are not novel meta-heuristics

We hypothesize that the use of evolutionary concepts/principles such as
evolvability and higher-order mutation rates can lead to more robust evoRL
agents, especially when facing dynamic (non-stationary) environments

Bruno Gašperov, PhD Prof. Branko Šter, PhD Meta-learning in evolutionary reinforcement learning: some paths forwardOctober 8, 2024 8 / 18



Principle 1: evolvability

While many definitions of evolvability exist, it is commonly defined as the ability of
an individual or population to produce offspring with mutually diverse
behaviors/phenotypes

From an EC/ERL perspective, two separate functions are needed:

the fitness function f : Θ 7→ R mapping solutions to fitness values
the behavior function b : Θ 7→ B mapping solutions to their corresponding
behaviors/phenotypes

Used in quality-diversity (QD) and novelty search (NS) families of approaches

Example: given robot parameters θ, f (θ) is the robot’s speed, and b(θ) the type of
its gait (e.g. one-legged, symmetric, etc.)

Parent solution

Children solutions

Figure: Phenotypically evolvable solution where phenotype = [color, shape]
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Principle 1: evolvability (cont.)

A solution θ is phenotypically evolvable if small perturbations of θ (representing its
children) lead to significant changes in the corresponding phenotypes/behaviors
(θ′ ≈ θ, b(θ′) ̸≈ b(θ))

Highly evolvable solutions might serve as good starting points (initializations) when
facing dynamic environments, as only a few mutations are needed to obtain
different behaviors, each of which might perform well under different circumstances

Figure: Imagine evolvable solutions as saddle points in the Θ 7→ B mapping
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Principle 1: evolvability (cont.)

Some prior research: Gasperov et al. [7] study evolvability in the context of
neuroevolutionary divergent search (a form of novelty search) on an evoRL
robotics task, finding that more pressure for novelty means higher evolvability
Similar prior findings by Doncieux et al. [8] with novelty search promoting
evolvability
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Principle 1: evolvability - future work

Current research assumes that the variation (mutation) operators are static,
and themselves exempt from the evolutionary process, which is not the case
with biological evolution

General idea: ideally, no operators are fixed, everything evolves!

Rethinking evolvability...

We will focus on finding solutions that are not only evolvable in
producing diverse offspring, but are also tied to mutation opera-
tors that promote long-term evolvability.
→ We aim to find evolvable solutions within the Θ ∪ Ω space,
enhancing the evolutionary potential of the system.
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Principle 2: higher-order mutation rates

We also investigate the use of higher-order mutation rates; while meta-mutation
rate corresponds to meta-learning, higher-order mutation rates represent
higher-order meta-learning

Idea: mutation rate is not fixed, but its variance is controlled by a meta-mutation
rate, which is in turn controlled by a meta-meta-mutation rate, etc. A tower.

...

Mutation rate

Meta-mutation rate

Meta-meta-mutation
rate

n-th order meta-
mutation rate
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Principle 2: higher-order mutation rates (cont.)

In a Gaussian case:

θ′ ∼ N
(
θ, σ2

1

)
,

σ′
i ∼ N

(
σi , σ

2
i+1

)
, 1 ≤ i < n,

σ′
n ∼ N

(
σn, σ

2
meta

)
,

(3)

where θ denotes the solution, σi the mutation rate of order i , σmeta the fixed top
meta-mutation rate, and N (·, ·) the Gaussian mutation operator parametrized by
the mean and variance. The order is given by n - the tower height.
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Principle 2: higher-order mutation rates (cont.)

We also study what happens if we let the meta-learning order itself evolve.

Some preliminary results indicate that the mean meta-learning order in the order
increases precisely when dynamic changes in the environment take place.

The system adjusts the mean meta-learning order accordingly!
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Conclusion (with further principles and ideas)

The exploration of different evolutionary principles for the development
of more robust, high-performing, sample-efficient RL agents, especially in
uncertain and dynamic environments - the essence of the FERLUDE project.

Much remains to be investigated

Self-adaptivity in general: dynamic (evolving) evolutionary operators -
co-evolution of agents, environments, and operators themselves
For example, evolving the amount of selective pressure, instead of setting it
exogenously (”selecting for selection”) [9]
New types of regularization (e.g. sparsity, binary mask overlaid over DNN
weights)
Links between risk-aversion and exploration strategies
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