Using ML to search for scalar lepton partners at the LHC

Based on work with B. Dutta, T. Ghosh, A. Horne, J. Kumar, S. Palmer, P. Sandick, M. Snedeker and J. W. Walker, Phys. Rev. D 109, no.7, 075018 (2024) arXiv:2309.10197

Patrick Stengel (Jožef Stefan Institute)

What do we really know about Dark Matter?

What we (typically) assume

- Non-electromagnetically interacting particle
- Must be cold and stable
- Not in the Standard Model

Weakly interacting massive particle

- Produced in early universe
- Weak scale mass for relic density
- Predict interactions with SM in e.g. charged mediator models

Patrick Stengel (Jožef Stefan Institute)

Dark matter models with scalar lepton partners

Charged mediator signals in proton collisions at LHC

Collider searches

Simulation chain for new physics at LHC

Collider searches

Collider searches

Construct higher level features

BDT analysis

After precuts, train BDT to classify signal and background

BDT analysis

Significance $\gtrsim 6\sigma$ for $m_{\tilde{\mu}_L} = 110 \, { m GeV}$ and $m_{\chi} = 80 \, { m GeV}$

 $\mathcal{L} = 300 \text{ fb}^{-1}$ for Validation Fold 1

BDT analysis

Discover $m_{\tilde{\mu}_L} \gtrsim 110 \, { m GeV}$ and exclude $m_{\tilde{\mu}_L} \lesssim 160 \, { m GeV}$

Conclusions and outlook

Using ML to probe the nature of Dark Matter

 $\mathcal{L} = 300 \text{ fb}^{-1}$ for Validation Fold 1

Improve on cut-and-count analysis for scalar lepton searches at LHC

- Sensitivity to $m_{\tilde{\mu}_I} \lesssim 160 \, {
 m GeV}$
- Systematics $S/B \sim 0.15 0.40$
- Kinematic tranching to increase sampling at tails of distributions
- Precuts to bring signal and backgrounds (closer) to parity

Additional ML techniques

- Deep neural networks
- Convolutional neural networks
- Adversarial neural networks

Look for WIMPs interacting around us or produce them

Motivate/constrain parameter space by requiring $g_{\mu} - 2$

Parameter space for Δa_{μ} and $\Omega_{\rm DM}$ from co-annihilation

Patrick Stengel (Jožef Stefan Institute)

1st SMASHing Workshop

October 10, 2024 3 / 20

Perturbative unitarity and electroweak vacuum stability

Patrick Stengel (Jožef Stefan Institute)

1st SMASHing Workshop

Generalize DM couplings to get $\Omega_{\rm DM}$ from DM annihilation

More kinematic distributions

Consider multidimensional representations

Patrick Stengel (Jožef Stefan Institute)

1st SMASHing Workshop

2D histograms of angular kinematic distributions

Residual cross sections (fb) for primary and secondary cuts

Primary Selection	tījj	ττjj	Zjjjj	WWjj	S ¹¹⁰ ₃₀	S ₄₀ ¹¹⁰
Matched Production	$6.1 imes 10^5$	$5.6 imes10^4$	$5.2 imes10^7$	$9.5 imes10^4$	$1.9 imes 10^2$	$1.9 imes 10^2$
au-veto	$5.4 imes 10^5$	$3.0 imes 10^4$	$5.1 imes 10^7$	$8.9 imes10^4$	$1.9 imes 10^2$	$1.9 imes 10^2$
OSSF muon	$3.5 imes 10^3$	$4.3 imes 10^2$	$6.0 imes 10^5$	$5.1 imes 10^2$	$8.1 imes 10^1$	$8.8 imes10^1$
exactly 1J P_T > 30	$6.6 imes 10^2$	$2.6 imes 10^2$	$7.1 imes 10^4$	$1.1 imes 10^2$	$1.6 imes 10^1$	$1.7 imes 10^1$
Jet <i>b</i> -veto	$1.9 imes 10^2$	$2.5 imes 10^2$	$7.0 imes 10^4$	$1.1 imes 10^2$	$1.6 imes 10^1$	$1.7 imes 10^1$
<i>∉</i> _T > 30 GeV	1.6×10^{2}	$1.8 imes 10^2$	$8.9 imes 10^3$	$9.2 imes 10^1$	$1.3 imes 10^1$	$1.4 imes 10^1$

Secondary Selection	tījj	ττjj	Zjjjj	WWjj	S ¹¹⁰ ₃₀	S ¹¹⁰ S ⁴⁰
$m_{\ell\ell} \notin M_Z \pm 10 { m GeV}$	$1.4 imes 10^2$	$1.8 imes 10^2$	$6.2 imes 10^2$	$7.9 imes10^1$	1.1×10^1	$1.2 imes 10^1$
$\cos\theta^*_{\ell_1,\ell_2} < 0.5$	$8.1 imes 10^1$	$1.6 imes 10^2$	$4.7 imes 10^2$	$4.5 imes 10^1$	$8.0 imes 10^0$	$9.0 imes10^0$
$m_{ au au} > 125~{ m GeV}$	$2.7 imes 10^1$	$2.3 imes 10^1$	$8.7 imes 10^1$	$1.4 imes 10^1$	$3.6 imes 10^0$	$3.9 imes 10^0$
$\not\!$	$2.9 imes 10^0$	6.6×10^{-1}	0	$2.3 imes 10^0$	6.6×10^{-1}	$7.1 imes 10^{-1}$
${\rm Jet}\; P_T > 125 {\rm GeV}$	$1.1 imes 10^0$	$6.6 imes10^{-1}$	0	$1.7 imes 10^{0}$	5.2×10^{-1}	$4.6 imes 10^{-1}$

Tertiary cuts for optimized for intermediate mass gaps

Tertiary Selection	tījj	ττjj	WWjj	S ¹¹⁰ ₃₀	S ₄₀ ¹¹⁰
$\Delta \phi(\ell_1,\ell_2) \div \pi > 0.5$	1.1×10^{0}	5.5×10^{-3}	$1.3 imes10^0$	$4.4 imes 10^{-1}$	4.1×10^{-1}
$\Delta \phi(\not\!$	4.8×10^{-1}	$5.5 imes 10^{-3}$	$9.0 imes10^{-1}$	$3.3 imes 10^{-1}$	$3.0 imes 10^{-1}$
$\Delta \phi(\not\!\!\!E_T,\ell_2) \div \pi < 0.6$	1.8×10^{-1}	0	$5.1 imes 10^{-1}$	2.2×10^{-1}	2.0×10^{-1}
Events at $\mathcal{L} = 300 \; \mathrm{fb}^{-1}$	52.8	0	151.7	66.0	60.0
$S \div (1 + B)$	-	-	-	0.30	0.27
$S \div \sqrt{1+B}$	-	-	-	4.4	4.0

Project $\sim 3\sigma$ sensitivity to $m_{ ilde{\mu}_L} = 110\,{ m GeV}$ at ${\cal L} = 300{ m fb}^{-1}$

Patrick Stengel (Jožef Stefan Institute)

October 10, 2024

11/20

Trees partition final state phase space into decision regions

Split leaf nodes to minimize objective	Define tree by score on each leaf
obj = $\sum_{\text{data}} \ell(y_i, \hat{y}_i) + \omega(f)$, with $\hat{y}_i = f(\mathbf{x}_i)$ and regularization ω	$f(\mathbf{x}) = \mathbf{w}_{q(\mathbf{x})}$, vector of scores \mathbf{w} with q assigning each \mathbf{x}_i to a leaf

Patrick Stengel (Jožef Stefan Institute)

1st SMASHing Workshop

Ensembles of trees built iteratively using gradient boosting

$$\hat{y}_i^{(t)} = \sum_{\text{trees}} f_j(\mathbf{x}_i) = \hat{y}_i^{(t-1)} + f_t(\mathbf{x}_i)$$

$$\text{obj} = \sum_{\text{data}} \ell(y_i, \hat{y}_i^{(t)}) + \omega(f_t)$$

$$\Delta \ell \approx \sum_{\text{data}} \left[g_i f_t(\mathbf{x}_i) + h_i f_t^2(\mathbf{x}_i) / 2 \right]$$

$$g_i, h_i = \partial_{\hat{y}_i^{(t-1)}}^{1,2} \ell(y_i, \hat{y}_i^{(t-1)})$$

Patrick Stengel (Jožef Stefan Institute)

1st SMASHing Workshop

After precuts, train BDT to classify signal and background

Additional folds for event distributions

Integrated Event Distribution in Validation Fold 1

Additional folds for probability distributions

Normalized Event Distribution in Validation Fold 1

Patrick Stengel (Jožef Stefan Institute)

Additional folds for summary statistics

Patrick Stengel (Jožef Stefan Institute)

October 10, 2024 17 / 20

Features most important for BDT rejecting $t\bar{t}$, W^+W^-

 $t\bar{t}jj$ Background in Training Fold 1

 W^+W^-jj Background in Training Fold 1

Relative contributions to reduction in ensemble objective function	$M_{ m T2}^{100}$ dominates total gain for BDT trained for individual $tar{t},~W^+W^-$	
 Sensitive to number of nodes 	Minimal mass of pair-produced	
 Events through those nodes 	parent to decay into $\ell + (\chi)(u)$	
• Weights carried by those events	assuming $m_{\chi, u}=100{ m GeV}$	

$M_{\rm T2}^{100}$ distribution for signal vs. $t\bar{t}$, W^+W^- after precuts

Additional donut plots

 $\ell^+\ell^-jjj$ Background in Training Fold 1

ZZjj Background in Training Fold 1

 $\tau^+\tau^- jjj$ Background in Training Fold 1

