
Using ML to search for scalar lepton partners at the LHC

Based on work with B. Dutta, T. Ghosh, A. Horne, J. Kumar, S. Palmer, P. Sandick,
M. Snedeker and J. W. Walker, Phys. Rev. D 109, no.7, 075018 (2024) arXiv:2309.10197

CMS / CERN

www.vpnsrus.com

U. Glasmacher

 

2 
 

Contents 
 

Overview ............................................................................................................................................4 

Supervisory structure .....................................................................................................................4 

Main documents ............................................................................................................................4 

Personal Career Development Plan .............................................................................................5 

Financial Plan ..............................................................................................................................5 

Research Ethics ...........................................................................................................................7 

Why do I need to submit a SMASH Proportionate Ethical Review Form? .....................................8 

Data management plan ...............................................................................................................9 

Timeline .............................................................................................................................................9 

First month after employment .......................................................................................................9 

Periodic reporting......................................................................................................................... 10 

Reports for Supervisory Board ................................................................................................... 10 

Reports for Ministry of Higher Education, Science and Innovation ............................................. 10 

Final Reports ................................................................................................................................ 10 

Envisioned training........................................................................................................................... 11 

Training events ............................................................................................................................. 11 

Secondments ................................................................................................................................ 12 

Before going to Secondments.................................................................................................... 13 

Keeping records of the Secondments ........................................................................................ 13 

Research tasks, deliverables and obligations ................................................................................... 14 

Research Tasks & Deliverables .................................................................................................. 14 

Fellow’s Obligations .................................................................................................................. 15 

Useful information ........................................................................................................................... 16 

HPC VEGA Introductory workshop for SMASH Fellows ............................................................... 16 

Application for access to HPC Vega............................................................................................ 16 

Repository of document templates ........................................................................................... 17 

Abbreviations ............................................................................................................................ 18 

 

 

Version 3, July 2024 

 

16 
 

»This publication is supported by the European Union's Horizon Europe research and 
innovation programme under the Marie Skłodowska-Curie Postdoctoral Fellowship 
Programme, SMASH co-funded under the grant agreement No. 101081355. « 

 

For all deliverables and dissemination (public presentations, papers, outreach activities) fellows 
should use the ppt templates, document templates with project and EU logo.  

 

Project logo: 
 

 
EU logo:      

 
Co-funding statement:   This project has received the funding from the European 

Union's Horizon Europe research and innovation programme 
under the Marie Skłodowska-Curie grant agreement No. 
101081355.  

 

 

Useful information 
 
HPC VEGA Introductory workshop for SMASH Fellows  

 
As SMASH Fellows have the possibility to use the Slovenian supercomputer HPC Vega, our 
partner Institute of Information Science will organise the HPC VEGA Introductory workshop 
where fellows will get the general information about HPC Vega and a hands-on demonstration 
of utilizing the VEGA HPC system.  At the workshop, fellows will be able to apply for access to 
HPC VEGA and go through the account creation process. The workshop is organised on zoom 
and the recordings will be available.  

The Institute of Information Science will inform and invite fellows to participate at the 
workshop by email. 

 This workshop can be included in the PCDP in the section of Soft-skill training. 
 
Application for access to HPC Vega 
 
SMASH fellows should apply with their project for the Development call (Calls for access and use of 
resources - SLING) since they will be granted access to HPC Vega much faster than if they applied on 
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Dark matter models with scalar lepton partners

What do we really know about Dark Matter?

What we (typically) assume

Non-electromagnetically
interacting particle

Must be cold and stable

Not in the Standard Model

Weakly interacting massive particle

Produced in early universe

Weak scale mass for relic density

Predict interactions with SM in
e.g. charged mediator models

MARK GARLICK/SCIENCE PHOTO LIBRARY
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Dark matter models with scalar lepton partners

Charged mediator signals in proton collisions at LHC

Protons composed of quarks, gluons

SM interactions with mediators

Decay to leptons and invisible DM

u
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Collider searches

Simulation chain for new physics at LHC

Define Model
• Particle spectrum
• Feynman rules
• Parameter space

Parton Level
• Matrix elements
• Event simulation
• Sufficient statistics?

Hadron Level
• Parton showering
• Hadronization
• Jet Matching

Detector Level
• Fast simulation
• Reconstruction
• Phase space
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Collider searches

Search pp → `+`−/ET phase space for charged mediators
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Collider searches

Construct higher level features
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BDT analysis

After precuts, train BDT to classify signal and background
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BDT analysis

Significance >∼ 6σ for mµ̃L
= 110GeV and mχ = 80GeV
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BDT analysis

Discover mµ̃L
>∼ 110GeV and exclude mµ̃L

<∼ 160GeV
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Conclusions and outlook

Using ML to probe the nature of Dark Matter
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664 14. COMBINING MODELS

Figure 14.6 Binary tree corresponding to the par-
titioning of input space shown in Fig-
ure 14.5.

x1 > θ1

x2 > θ3

x1 ! θ4

x2 ! θ2

A B C D E

divides the whole of the input space into two regions according to whether x1 ! θ1

or x1 > θ1 where θ1 is a parameter of the model. This creates two subregions, each
of which can then be subdivided independently. For instance, the region x1 ! θ1

is further subdivided according to whether x2 ! θ2 or x2 > θ2, giving rise to the
regions denoted A and B. The recursive subdivision can be described by the traversal
of the binary tree shown in Figure 14.6. For any new input x, we determine which
region it falls into by starting at the top of the tree at the root node and following
a path down to a specific leaf node according to the decision criteria at each node.
Note that such decision trees are not probabilistic graphical models.

Within each region, there is a separate model to predict the target variable. For
instance, in regression we might simply predict a constant over each region, or in
classification we might assign each region to a specific class. A key property of tree-
based models, which makes them popular in fields such as medical diagnosis, for
example, is that they are readily interpretable by humans because they correspond
to a sequence of binary decisions applied to the individual input variables. For in-
stance, to predict a patient’s disease, we might first ask “is their temperature greater
than some threshold?”. If the answer is yes, then we might next ask “is their blood
pressure less than some threshold?”. Each leaf of the tree is then associated with a
specific diagnosis.

In order to learn such a model from a training set, we have to determine the
structure of the tree, including which input variable is chosen at each node to form
the split criterion as well as the value of the threshold parameter θi for the split. We
also have to determine the values of the predictive variable within each region.

Consider first a regression problem in which the goal is to predict a single target
variable t from a D-dimensional vector x = (x1, . . . , xD)T of input variables. The
training data consists of input vectors {x1, . . . ,xN} along with the corresponding
continuous labels {t1, . . . , tN}. If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the optimal value of the predictive
variable within any given region is just given by the average of the values of tn for
those data points that fall in that region.Exercise 14.10

Now consider how to determine the structure of the decision tree. Even for a
fixed number of nodes in the tree, the problem of determining the optimal structure
(including choice of input variable for each split as well as the corresponding thresh-

Bishop (2006)

Improve on cut-and-count analysis
for scalar lepton searches at LHC

Sensitivity to mµ̃L
<∼ 160GeV

Systematics S/B ∼ 0.15− 0.40

Kinematic tranching to increase
sampling at tails of distributions

Precuts to bring signal and
backgrounds (closer) to parity

Additional ML techniques

Deep neural networks

Convolutional neural networks

Adversarial neural networks
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Look for WIMPs interacting around us or produce them

SLAC National Accelerator Laboratory

Indirect Detection

Collider Production 

Direct Detection

mass ~ 1 to 1k 
proton masses 

density ~ 1k to 
1M per cubic m  
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Motivate/constrain parameter space by requiring gµ − 2

y = (m2
µ̃2
−m2

µ̃1
) sin(2θµ̃)/(4m2

W )

Patrick Stengel (Jožef Stefan Institute) 1st SMASHing Workshop October 10, 2024 2 / 20



Parameter space for ∆aµ and ΩDM from co-annihilation
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Perturbative unitarity and electroweak vacuum stability
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Generalize DM couplings to get ΩDM from DM annihilation

Fix θµ̃ = −45◦, mµ̃2/mµ̃1 = 1.25
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More kinematic distributions
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Consider multidimensional representations
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2D histograms of angular kinematic distributions
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Residual cross sections (fb) for primary and secondary cuts

Primary Selection tt̄jj ττ jj Zjjjj WWjj S110
30 S110

40

Matched Production 6.1× 105 5.6× 104 5.2× 107 9.5× 104 1.9× 102 1.9× 102

τ -veto 5.4× 105 3.0× 104 5.1× 107 8.9× 104 1.9× 102 1.9× 102

OSSF muon 3.5× 103 4.3× 102 6.0× 105 5.1× 102 8.1× 101 8.8× 101

exactly 1J PT > 30 6.6× 102 2.6× 102 7.1× 104 1.1× 102 1.6× 101 1.7× 101

Jet b-veto 1.9× 102 2.5× 102 7.0× 104 1.1× 102 1.6× 101 1.7× 101

/ET > 30 GeV 1.6× 102 1.8× 102 8.9× 103 9.2× 101 1.3× 101 1.4× 101

Secondary Selection tt̄jj ττ jj Zjjjj WWjj S110
30 S110

40

m`` /∈ MZ ± 10 GeV 1.4× 102 1.8× 102 6.2× 102 7.9× 101 1.1× 101 1.2× 101

cos θ∗`1,`2
< 0.5 8.1× 101 1.6× 102 4.7× 102 4.5× 101 8.0× 100 9.0× 100

mττ > 125 GeV 2.7× 101 2.3× 101 8.7× 101 1.4× 101 3.6× 100 3.9× 100

/ET > 125 GeV 2.9× 100 6.6× 10−1 0 2.3× 100 6.6× 10−1 7.1× 10−1

Jet PT > 125 GeV 1.1× 100 6.6× 10−1 0 1.7× 100 5.2× 10−1 4.6× 10−1
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Tertiary cuts for optimized for intermediate mass gaps
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Tertiary Selection tt̄jj ττ jj WWjj S110
30 S110

40

∆φ(`1, `2)÷ π > 0.5 1.1× 100 5.5× 10−3 1.3× 100 4.4× 10−1 4.1× 10−1

∆φ( /ET , `1)÷ π < 0.6 4.8× 10−1 5.5× 10−3 9.0× 10−1 3.3× 10−1 3.0× 10−1

∆φ( /ET , `2)÷ π < 0.6 1.8× 10−1 0 5.1× 10−1 2.2× 10−1 2.0× 10−1

Events at L = 300 fb−1 52.8 0 151.7 66.0 60.0

S ÷ (1 + B) - - - 0.30 0.27

S ÷
√

1 + B - - - 4.4 4.0
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Project ∼ 3σ sensitivity to mµ̃L
= 110GeV at L = 300fb−1
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Trees partition final state phase space into decision regions

664 14. COMBINING MODELS

Figure 14.6 Binary tree corresponding to the par-
titioning of input space shown in Fig-
ure 14.5.

x1 > θ1

x2 > θ3

x1 ! θ4

x2 ! θ2

A B C D E

divides the whole of the input space into two regions according to whether x1 ! θ1

or x1 > θ1 where θ1 is a parameter of the model. This creates two subregions, each
of which can then be subdivided independently. For instance, the region x1 ! θ1

is further subdivided according to whether x2 ! θ2 or x2 > θ2, giving rise to the
regions denoted A and B. The recursive subdivision can be described by the traversal
of the binary tree shown in Figure 14.6. For any new input x, we determine which
region it falls into by starting at the top of the tree at the root node and following
a path down to a specific leaf node according to the decision criteria at each node.
Note that such decision trees are not probabilistic graphical models.

Within each region, there is a separate model to predict the target variable. For
instance, in regression we might simply predict a constant over each region, or in
classification we might assign each region to a specific class. A key property of tree-
based models, which makes them popular in fields such as medical diagnosis, for
example, is that they are readily interpretable by humans because they correspond
to a sequence of binary decisions applied to the individual input variables. For in-
stance, to predict a patient’s disease, we might first ask “is their temperature greater
than some threshold?”. If the answer is yes, then we might next ask “is their blood
pressure less than some threshold?”. Each leaf of the tree is then associated with a
specific diagnosis.

In order to learn such a model from a training set, we have to determine the
structure of the tree, including which input variable is chosen at each node to form
the split criterion as well as the value of the threshold parameter θi for the split. We
also have to determine the values of the predictive variable within each region.

Consider first a regression problem in which the goal is to predict a single target
variable t from a D-dimensional vector x = (x1, . . . , xD)T of input variables. The
training data consists of input vectors {x1, . . . ,xN} along with the corresponding
continuous labels {t1, . . . , tN}. If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the optimal value of the predictive
variable within any given region is just given by the average of the values of tn for
those data points that fall in that region.Exercise 14.10

Now consider how to determine the structure of the decision tree. Even for a
fixed number of nodes in the tree, the problem of determining the optimal structure
(including choice of input variable for each split as well as the corresponding thresh-

Bishop (2006)

14.4. Tree-based Models 663

Figure 14.4 Comparison of the squared error
(green) with the absolute error (red)
showing how the latter places much
less emphasis on large errors and
hence is more robust to outliers and
mislabelled data points.

0 z

E(z)

−1 1

can be addressed by basing the boosting algorithm on the absolute deviation |y − t|
instead. These two error functions are compared in Figure 14.4.

14.4. Tree-based Models

There are various simple, but widely used, models that work by partitioning the
input space into cuboid regions, whose edges are aligned with the axes, and then
assigning a simple model (for example, a constant) to each region. They can be
viewed as a model combination method in which only one model is responsible
for making predictions at any given point in input space. The process of selecting
a specific model, given a new input x, can be described by a sequential decision
making process corresponding to the traversal of a binary tree (one that splits into
two branches at each node). Here we focus on a particular tree-based framework
called classification and regression trees, or CART (Breiman et al., 1984), although
there are many other variants going by such names as ID3 and C4.5 (Quinlan, 1986;
Quinlan, 1993).

Figure 14.5 shows an illustration of a recursive binary partitioning of the input
space, along with the corresponding tree structure. In this example, the first step

Figure 14.5 Illustration of a two-dimensional in-
put space that has been partitioned
into five regions using axis-aligned
boundaries.
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Split leaf nodes to minimize objective

obj =
∑

data `(yi , ŷi ) + ω(f ), with
ŷi = f (xi ) and regularization ω

Define tree by score on each leaf

f (x) = wq(x), vector of scores w
with q assigning each xi to a leaf

Patrick Stengel (Jožef Stefan Institute) 1st SMASHing Workshop October 10, 2024 12 / 20



Ensembles of trees built iteratively using gradient boosting

ŷ
(t)
i =

∑
trees fj(xi ) = ŷ

(t−1)
i + ft(xi )

obj =
∑

data `(yi , ŷ
(t)
i ) + ω(ft)

∆` ≈∑data

[
gi ft(xi ) + hi f

2
t (xi )/2

]
gi , hi = ∂1,2

ŷ
(t−1)
i

`(yi , ŷ
(t−1)
i )
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After precuts, train BDT to classify signal and background
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Additional folds for event distributions
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Additional folds for probability distributions
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Additional folds for summary statistics
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Features most important for BDT rejecting tt̄, W+W−
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M100
T2 distribution for signal vs. tt̄, W+W− after precuts
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Additional donut plots
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