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*Fifth Generation (5G) Overview:
* Current generation wireless technology.

* Massive machine type of communications

(mMTC) Video game Remote
* Ultra-reliable low-latency communications s ol
(URLLC)
* Internet of Things (IoT)
* Communication of connected devices. Smart Industry
buildip_gs connection
* Facilitates smart homes. SRR automation
* Augmented and Virtual Reality (AR/VR)
* Enhances user experiences with
immersive technologies.
* AR/VR applications. and viebaal
reality

Autonomous Vehicles

Enhanced Mobile Broadband Figure. 1 5G Use Cases [1]
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Figure. 2 6G Applications [2]

Introduction
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but about fostering deeper, more meaningful and intelligent interactions in an increasingly Digital world



Introduction — 6G Applications and Security

Communication Revolution with 6G (IoNT) speed and
connectivity.

Personalized Medicine & Healthcare Advancements :

e Health Monitoring: real-time health monitoring
through high-speed, low-latency connections.

* Improved telemedicine and remote patient
monitoring

* Remote Healthcare: Patient monitoring and virtual
consultations, transforming healthcare delivery.

* Data Precision for personalized treatment plans.

Autonomous Systems:
* Empowering autonomous vehicles, drones, robots
* Precision navigation and coordination

Smart Cities and Infrastructure:
* Smart city applications, energy and traffic
* Intelligent infrastructure

Climate Research & Environmental Monitoring:

* Advanced environmental monitoring, climate
change research and disaster management.

* Real-time data collection for proactive measures
in preserving and sustaining the environment.

Security and Surveillance:

* Enhanced security systems with real-time data
analytics and monitoring.

* Improved surveillance

Innovations in Agriculture:

* Precision agriculture IoNT devices and sensors
connected via 6G.

* Monitoring and controlling agricultural
processes



Current Conventional Security Mechanisms
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Spread Spectrum is a technique where the signal
1s spread across a wider bandwidth using a
spreading code [3]

Types of Spread Spectrum:

e Direct Sequence Spread Spectrum (DSSS)
e Frequency Hopping Spread Spectrum
(FHSS)

Key Benefits:

e Resistance to interference
e Improved security
e Multipath fading mitigation



Unconventional Security Mechanisms

INoise as a carrier to establish more secure or covert spread
spectrum communication system started in 1950°s [1]

O
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(2017 O
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Random Communication System (RCS) Alpha-stable distribution

based on Alpha-stable Noise

a-Stable distribution does not have closed form density function and  Four related parameters are;
is expressed by characteristic function:

Bstabie (t; ,0, B, 1) = E [e'X]

| exp (ipt —|ot|* (1 —iB (signt) tan Z2)) a#l
B exp (iut — o |t| (1 +iB2 (signt)In [t])) a=1

L t>0
signt = 0. t=0

], t<0

o . the index of stability or the shape parameter, a € (0,2)
o [: the skewness parameter, § € [1,1]
o ¢ the scale parameter, o € (0, +00)

o Ju: the location parameter, ju € (—00,+00)
where
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Random Communication System (RCS) Proposed RCS Model

based on Alpha-stable Noise

The method proceeds by subdividing the

_ received data {xl’ Xy« y Xy} In duration

nii"’;‘::r‘:‘)m ¥ e P consisting of N samples into L non
| overlapping segments of length K.

Ylmax = log {max(le—K'Hl i € 1121 "'rK)}

sx(a !_B!o.ly)
noisa generator|

! N I Yimin = log {—=min(xjg_g+|1 € 1,2, ...,K)}

- - —

. 1sL
Bernoulli random : - Ymax =1 Zl:l Yimax :
binary generator

Estimator

Modulation
Estimated | !
binary [ . 2 1 L 2
message ! Hard [ Smax = [ 1=1(Yimax — Ymax)

151
Y, n=p Zl:lylmin >

decision

2 _ 1 51 2
Smin = L—-1 l=1(ylmin = Ymin)

Most Optimised Model [12] 2
Where @ = (— + —)

exp (@(Smax—Smin)) Ymax Ynin

Receiver
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Random Communication System (RCS)

based on Alpha-stable Noise

Transmission Testing
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Binary Message sequence (Top), Transmitted Signal In time Domain (Bottom); Bit
length =1, N = 1000 noise samples per information bit, =1x 10° [12]
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parameters and recovered binary message (bottom); Bit length =1, N = 1000 noise

samples per information bit, =1x 10° bit [12] 11



Random Communication System (RCS) Performance Analysis

based on Alpha-stable Noise

MSNR 5 = 1010g%

Where Y and Y. are the

dispersion parameters of

the information bearing e,
. =

a-stable random signal =2

and channel noise [7].

I i
-10 -9
MSNR in dB

BER vs. MSNR (dB) with different ‘L and K’ of estimator in AWGN channel; where = 1.5; (Where ,=-,=1) [12]

05/11/2018 Thesis Defense Presentation 12



Synchronized Random Communication Proposed RCS Model
System (RCS) Noise
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Block diagram of the RCS based on a-stable Levy noise along with the proposed Synchronization Blocks on Transmitter and
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Synchronized Random Communication

Transmitter Testing

System (RCS) Noise
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Synchronized Random Communication Receiver Testing

System (RCS) Noise
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Synchronized Random Communication

System (RCS) Noise

Performance Analysis

. X =
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N

BER vs. MSNR for different characteristic exponents ‘a’ [13]
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Thesis Defense Presentation

BER vs. MSNR for different characteristic exponents ‘o’ & ‘f’ [13]
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Inverse System Approach to design

Model and Initial Testing

Secure RCS

MEVM
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Inverse System Approach to design

Performance Analysis
Secure RCS
MEVM 0 ; =
i — 0 4 «#BER margin fora = 1.2
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0 s \
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R=[ABCD]; 10°4-D-Bob o = 1.4 B =
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[ 001  0.98 [ 2.19 o © 38 a7 < X 3 =3
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#&,=[A—BD"'C BD™! —D-I!Cc D] different s utilized by Alice; number of transmitted
bits=1000
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Multiple Inverse System Approach for Proposed Model

Secure RCS in Terahertz Band

mth-order mth-order mth-order mth-order mth-order mth-order
SkaS-NSK Inverse Inverse Inverse
B || BT |y LTI |y LTI |||Yroi swen Ew Yo, Y
Signal |7 Y i - W ogemal 71| LD |ogesoosi| LIE |3 LTI
Generator System System System 7 System System System
, 1 ’ H MEVM H 2 1
Alice based
estimator
Wille
= Bob MEVM o
BER|¢ based estimator

System model of the proposed ERCS based on the multiple inverse systems
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Multiple Inverse System Approach for Initial Results

Secure RCS in Terahertz Band
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Currently in Lab

* The research proposal aims to leverage AI and ML techniques to enhance the security of
wireless communications in the Terahertz (THz) band for future scientific applications.

* THz band offers immense bandwidth and potential for high-speed data transfer.
» Unique security challenges, such as vulnerability to eavesdropping and signal attenuation.

Radio Microwaves Infrared Ultraviolet XN-rays Y rays

1THz 1 PHz 1 EHz 1 2Hz
' 1 . | 1 i 1 4 1 A A A
10 10 10 10" 10" 10 10 10 10 10

1 MHz 1 GHz
1

* The proposal addresses these challenges by developing ML and data-driven solutions with
Random Communication Systems (RCSs), such as

* Intrusion detection

* Encryption, authentication,

» Adaptive modulation

* Coding, and channel modeling.



Expected Outcomes:

* Comprehensive data collection and analysis
framework for THz communication.

C OHClu Sion — * ML-driven intrusion detection, encryption,

authentication, and adaptive  modulation
techniques for THz communication

Beyond State * Data-driven channel models for THz

communication evaluation.

Of the Art * Testing and evaluation results of the Al-driven

secure communication solutions.

Bevond State of the Art:

* Advancing the state-of-the-art in machine
learning and wireless communication research.

* Enhancing the security and efficiency of
wireless communication systems for 5G/6G
applications.

* Supporting scientific applications that require
high-speed and secure data transmission, such as
multidisciplinary communications, healthcare
and climate operations.

* Contributing to the development of a
sustainable and secure future.
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