@ Genialis

Al Research at Genialis

Luka Ausec, Chief Discovery Officer, Genialis
October 8, 2024

NON-CONFIDENTIAL Copyright © 2024 Genialis, Inc.



Rafael Rosengarten, PhD
Co-founder, Chief Executive Officer
Co-founder, Board Director | Alliance for Al
in Healthcare | Baylor College of Medicine,
Lawrence Berkeley Labs, Yale University

Miha Stajdohar, PhD

Co-founder, Chief Technology Officer
Research Fellow | Baylor College of
Medicine | 20+ years in artificial intelligence
for biomedical discovery

Tjasa Krisper Kutin

Chief Operating Officer,

Head of People & Culture

Founder | Naymit, Primeris | 15+ yearsin
leading startup business operations, finance,
people operations, and compliance.

Luka Ausec, PhD

Chief Product Officer

Research Fellow | University of Ljubljana |
15+ years in computational biology and Al
driven drug discovery

Genialis Co-founders and Senior Leadership

Krista McKerracher, MBA
Chairperson, Board of Directors

VP Oncology Global Development | Novartis
Exec Director Ortho Diagnostics | J&J

25+ years in big Pharma product development

Ines Hikl

Head of Regulatory, Quality & Compliance
Technical manager | Bureau Veritas

20+ years in quality management, information
security and social responsibility

Aditya Pai, MBA

Head of Business Development

VP of Corp and Business Dev | Medgenome
VP of Sales | Genuity | IBM Watson

25+ yearsin genomics / life sciences

Mark Uhlik, PhD

VP of Biomarker Development

VP, Head of Biomarker Discovery | OncXerna

VP of Translational Oncology | HiberCell, Biothera
Principal Research Scientist | Eli Lilly & Co.,

20+ years in oncology translational development
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Team Highlights
e 38 team members
globally

e 14 PhDs,
including 2 MD/PhD

Company Highlights

e Globally diverse data
catalog approaching
1M harmonized
transcriptomics
samples

e Commercialization
lead for the
Xerna™ TME Panel

e Founding member
of the Alliance for
Artificial Intelligence
in Healthcare



Biomarkers are key to precision medicine NON-CONFIDENTIAL @ | 3

Bi-o-mark-er /'bio markar/
noun

A characteristic that is objectively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic intervention.
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Genialis is the RNA biomarker company.



Biology is too complex to rely on a single mutation NON-CONFIDENTIAL @ | 4
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We abstract biological complexity as NON-CONFIDENTIAL @ |5
a set of measurable phenotypes
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Genialis ResponderID™
Biology-first approach to guide therapy for all cancer patients
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ResponderID uses Genialis Foundation Model to predict patient response to therapy.
Hallmark biologies are learned from nearly ~1M harmonized transcriptomic records
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Cancer Biology Space
128 validated signatures



Genialis Foundation Model integrates specialized Al/ML
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models, each capturing distinct biological mechanisms
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Deep Neural Network

Multivariate Linear Model
Logistic Regression

Neural Network (MLP Classifier)
Logistic Regression
ElasticNet

Linear Regression
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Genialis Foundation Model was trained on ~1M

harmonized transcriptomic records

Sourced from 25k datasets across 30 tissue types,
blending diverse biological and clinical data

All: Stages |, 11, 111, IV | Treatment info

Brain

2,100 datasets | 80,000 Samples | T, N, M Samples

Head and neck

360 datasets | 30,000 Samples | T, N, M Samples

Skin

2,300 datasets | 90,000 Samples | T, N, M Samples

Breast

1,500 datasets | 50,000 Samples | T, N, M Samples

Lung

3,400 datasets | 90,000 Samples | T, N, M Samples

Gastrointestinal

5,600 datasets | 160,000 Samples | T, N Samples

Reproductive

2,300 datasets | 70,000 Samples | T, N, M Samples
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Patient stratification is achieved by defining phenotypes NON-CONFIDENTIAL @ | 10
from combinations of signatures, then assigning therapies
to phenotypes

Fine-tuning the decision model to patient outcomes

— (+]
- o - A - Targeted therapy X
— A B
> _ .
g B e o B - Rational combo
h% D C C - Investigational drug Y
— D - Chemo-agent Z
-
— Biology 2

Cancer Biology Space Disease phenotypes Treatment Decision



Genialis™ krasID predicts clinical benefit NON-CONFIDENTIAL @ | T
consistent with real world & clinical findings

10 ) —— Baseline (all)

Patients stratified as krasID-HIGH vs. krasID-LOW B ;00766 meclan =221 days
. . . 0.9 : 41/66, median = days
demonstrate dramatically different time on treatment : V g

08 N: 25/66, median = 472 days

Hazard Ratio (95%, Cl) =
0.7 0.342 (0.169-0.692)

P-Value (2-Sided) = 0.00281

Cohort characteristics and response results align closely
with CodeBreak100/200 clinical trial observations,
demonstrating accuracy in forecasting outcomes in clinical
trial settings.
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krasID-High patients stayed on sotorasib nearly 50% longer
than G12C-selected patients and 2.5x longer than .
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P KM plot of predicted benefit to sotorasib in a NSCLC RWE cohort
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Genialis™ kraslID outperforms current Standard of Care NON-CONFIDENTIAL @ | 12
Biomarkers, which are limited to mutational status

Historical Approach ( VS ) Genialis Advantage
e Limited to presence or absence of DNA e Integrates signal from KRAS biology with
mutation surrounding tumor milieu using RNA-seq
&ML

e Insufficient to predict efficacy (mutation
selected ORR ~ 30-40%) e >84% precision in real world patients

e Cannot inform time on treatment or
combination strategies

e Stratifies patients based on time on
treatment/ survival

e Reads-out actionable changes to other relevant
biologies
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Corporate website

e https://www.genialis.com/category/scientific-publications/

Internship program

Duration, remuneration: 2-3 month paid internship

Work arrangement: fully remote, flexible hours, access to Genialis infrastructure
Research focus: High-risk, low-admin research projects

Mentorship: MD PhD & Data Scientist
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