

## H<sub>2</sub>S detection in complex gas matrices

Sampaolo A<sup>(1,2)\*</sup>, Olivieri M<sup>(1)</sup>, Menduni G<sup>(1)</sup>, Zifarelli A<sup>(1)</sup>, Giglio M<sup>(1)</sup>, Patimisco P<sup>(1,2)</sup>, Spagnolo V<sup>(1,2)</sup>

 PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, CNR-IFN, Via Amendola 173, Bari,70126 Italy
PolySense Innovations srl, Via Amendola 173, Bari,70126 Italy

\*Corresponding author's email: <u>angelo.sampaolo@poliba.it</u>

In this work we report on two quartz-enhanced photoacoustic sensors for  $H_2S$  trace detection in natural gas leaks dispersed in air. The challenge for these two spectroscopic approaches consists in avoiding methane interference and detect hydrogen sulfide at the sub-ppm level.

**Background** – Hydrogen sulfide is a toxic gas and is a threat to human health, since it is rapidly absorbed by the lungs. Exposure to  $H_2S$  at high concentration levels will cause unconsciou

sness and death, because of respiratory paralysis and asphyxiation. Thus, due to its toxicity, flammability, and corrosivity, it is extremely important to detect and monitor its presence in situ and real time [1].

Optical detectors are a field-proven detection solution in many industrial applications because of the high selectivity provided by the use of lasers as gas target excitation source, and high sensitivity achieved through the implementation of several diverse spectroscopic approaches [2].

Standard photoacoustic and QEPAS sensors for in situ and real-time detection of multiple hydrocarbons in near- and mid-IR were already demonstrated [3], as well as  $H_2S$  sensors employing diode lasers in the near- IR [4] and quantum cascade lasers (QCLs) in the mid-IR [5].

The main issue related with  $H_2S$  detection consists in the fact that most of the hydrogen sulfide leaks in atmosphere are associated with natural gas leaks. This means that  $H_2S$  needs to be detected over a strong background of methane absorption, whose bands are partially or totally overlapping with  $H_2S$  bands all over the infrared region.

**Methods** – The first QEPAS configuration we implemented for  $H_2S$  detection within a methane-based gas matrix consists in on-beam sensor employing a custom 12 kHz quartz tuning fork, equipped with resonator tubes. The laser employed is an interband cascade laser emitting at 2636 nm. The main criteria adopted for identifying the optimum spectral conditions in this wavelength range were i) selecting a  $H_2S$  absorption line well separated from the surrounding features related to atmospheric absorbers, such water vapor, and from methane, which is the main component in a natural gas leak dispersed in air: the most suitable  $H_2S$  feature was found at 3793 cm<sup>-1</sup>; ii) investigating the trade-off working pressure minimizing the spectral overlap between  $H_2S$  absorption line and the absorption background without losing too much in the photoacoustic signal: this value was found at 100 torr.

The sensing system was tested for different gas mixtures containing traces of  $H_2S$  in a matrix of i)  $N_2$ , ii)  $N_2$  with methane up to percent scale, iii) standard air with methane up to percent scale.

As an alternative to the near-IR QEPAS sensor, we designed and developed a THz sensor based on a pulsed laser emitting at 2.87 THz and exciting a  $H_2S$  absorption line falling at 95.63 cm<sup>-1</sup> [6].



In fact, the smartest approach to detect real-time traces of  $H_2S$  in natural gas is to exploit its intense absorption bands in the THz range, where hydrocarbons absorption cross-sections are several orders of magnitude smaller. In the THz region, the absorption lines of  $H_2S$  are the strongest of the whole infrared spectrum. These optical transitions are divided into three groups, corresponding to energy levels related to the molecule rotation around the three axes and are perfectly spaced of 0.62 THz, 0.54 THz, and 0.28 THz, respectively. This situation avoids interference effects from hydrocarbons, enables a fast and easy  $H_2S$  detection scheme and creates an ideal spectral environment, where  $H_2S$  isotopes can be also discriminated and high precision measurements on isotopic ratios can be performed.

The two sensor architectures are shown in Fig. 1.



Fig. 1. Picture of the near-IR  $H_2S$  QEPAS sensor (a) and of the THz  $H_2S$  QEPAS sensor (b).

**Results** – The near-IR sensor proved to detect hydrogen sulfide at sub ppm level, in mixtures of standard air and methane at the percent concentration, at a working pressure of 100 Torr and an integration time of 10 s. The THz sensor has also demonstrated a sub-ppm sensitivity level in detection of  $H_2S$  at an integration time of 10 s and a working pressure of 60 Torr.

**Conclusions** – In this work we demonstrated two approaches for pursuing hydrogen sulfide detection in a natural gas leak dispersed in air. The sensor implementing the laser diode is a ready-to-use solution for discriminating H<sub>2</sub>S presence in a matrix where CH<sub>4</sub> concentration does not exceed the 10%. This is due to a minimal CH<sub>4</sub> absorption background affecting the H<sub>2</sub>S detection sensitivity. In the case of H<sub>2</sub>S THz detection, there are no restrictions for CH<sub>4</sub> concentration in the matrix, since its absorption cross-sections are ~7 orders of magnitude lower with respect to H<sub>2</sub>S. The drawback is that THz sources are still far for commercialization and thus the related gas sensing technology.

## References

[1] Toxicological Review of Hydrogen Sulfide, US Environmental Protection Agency, 2003 in Support of Summary Information on the Integrated Risk Information System (IRIS).



[2] J. Hodgkinson, R.P. Tatam, Meas. Sci. Technol. 24:1 (2013), 012004.

[3] A. Sampaolo, P. Patimisco, M. Giglio, A. Zifarelli, H. Wu, L. Dong, and V. Spagnolo, Anal. Chim. Acta (2021), 338894.

[4] H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, F.K. Tittel, Appl. Phys. Lett. 107 (2015), 111104.

[5] M. Siciliani de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D'Amato, V. Spagnolo, Opt. Expr. 22:23 (2014) 28222.

[6] A. Sampaolo, C. Yu, T. Wei, A. Zifarelli, M. Giglio, P. Patimisco, H. Zhu, H. Zhu, L. he, H. Wu, L. Dong, G. Xu, and V. Spagnolo, Photoacoustics (2021), 21, 100219.