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Detection of different trace gases with the same instrument is one of the important requirements 
for in situ measurement. Benefits of computational intelligence (CI) implementation in 
photoacoustic spectroscopy (PAS) such as real-time operation and accuracy are confirmed [1], 
but whether intelligent PAS method can provide high selectivity in the detection of different 
trace gases? In this paper pulsed PAS is used to study C2H4+Ar gas mixture. Experimental 
signals are generated in the C2H4+Ar gas mixture, at absorber pressures 𝑝("#$%)	 = 0.47 mbar, 
total mixture pressure 𝑝()( = 100	mbar, and laser fluence Φ = 1	Jcm*#  [2]. Although 
multilayer perceptron network (MLPN) determines parameters of PA signal (spatial laser beam 
radius and vibrational-to-translational relaxation time) successful, selection of optimal MLPN 
architecture through a trial-and-error process, can be computational cost. To overcome 
problems related to network architecture Generalized Regression Neural Network (GRNN) is 
used to estimates PA signal parameters [3]. GRNN has some advantages such as fixed structure 
(there is no requirements for overall network optimization to select parameters of hidden 
neurons), and fast training (without an iterative procedure). Networks were trained in an off-
line regime. Theoretical PA signals (1) as the solution of the nonhomogeneous linearized wave 
equation, are calculated by the Fourier method [4] for top-hat spatial laser beam profile and 
different values of parameter 𝜀 (relaxation time) ∈ [0.5-4] and parameter 𝑟∗ (laser beam radius) 
∈ (39, 39.5, 40, 40.5).  
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Eqn. 1 

where	𝜀 related with relaxation time	𝜏/*3 (𝜀 = 𝜏4/𝜏/*3) and 𝑟∗ related to the radius of the 
laser beam	𝑟5  (𝑟∗ = 𝑟/𝑟5). GRNN was trained with 284 theoretical PA signals (Fig. 1). Several 
network structures were designed with different numbers of neurons in input layers (21 to 50) 
to test network prediction under different numbers of neurons in the input layer.  To compare 
the efficiency and effectiveness of MLPN prediction for SF6+Ar gas mixture and GRNN 
prediction for C2H4+Ar, a regression network was designed with 21 input neurons (as well as 
the MLPN). GRNN with 50 input neurons (Fig. 2) estimated parameters 𝜀 and 𝑟∗ with errors 
0.79%, and 0,02% respectively. GRNN with 21 input neurons provides better prediction in 
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comparison with MLPN primary for parameters 𝜀. Molecules SF6 and C2H4, are medium-sized 
polyatomic molecules with common relaxation characteristics, so possible limitations for in 
situ measurement are discussed.  

 
Fig. 1. Training set of 284 PA signals calculated by the Fourier method for top hat spatial laser beam profile and ε 

∈ [0.5-4] and r*∈ (39, 39.5, 40, 40.5). 

 

 
Fig. 2. Comparison between experimental PA signal and PA signal estimated by GRNN with 50 input neurons. 
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